
22.615, MHD Theory of Fusion Systems 
Prof. Freidberg 

Lecture 14: Formulation of the Stability Problem 
 
Hierarchy of Formulations of the MHD Stability Problem for Arbitrary 3-D 
Systems  
 

1. Linearized equations of motion 
 
2. Normal mode eigenvalue approach →

 
3. Variational approach 

 
4. Energy principle 

 
5. Extended Energy Principle 

 
Linearized Equations of Motion 
 
 Assume we have an equilibrium satisfying 
 
       static 
  
 0 00 00J B p V E 0× = ∇ = =   
 
 0 0 0B u J∇ × = ρ0  arb. 
 
 0B 0∇ × =  
 
 ( )0 0Q Q x 3D= →  in general  

 
Linearize the Equation  ( ) ( ) ( )10Q x, t Q x Q x, t= +  

 
 
Mass: v 0

t
∂ρ

+ ∇ ⋅ ρ =
∂

 1
10v 0

t
∂ρ

+ ∇ ⋅ ρ =
∂

 

Energy: dp
rp v 0

dt
+ ∇ ⋅ =  1

1 10 0
p

v p rp v
t

∂
0+ ⋅ ∇ + ∇ ⋅ =

∂
 

amp L:  J Bμ ⋅ =∇ ×  
10 1J Bμ = ∇ ×  

B∇ ⋅ : B 0∇ ⋅ =  
1B 0∇ ⋅ =  

Faraday: B
E v B

t
∂

= −∇ × = ∇ × ×
∂

 ( )1
1 0

B
v B

t
∂

= ∇ × ×
∂

 

Momentum: dv
J B p

dt
ρ = × − ∇  1

0 10 1 0
v

J B J B p
t

∂
1ρ = × + × − ∇

∂
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Simplify the PDE’s by introducing the displacement sector ξ  and appropriate 

initial conditions 
 

a. 1v
t

∂ξ
=
∂

 

 
b. ξ  is the plasma displacement away from equilibrium 

 
 Initial Conditions: Assume the plasma is in its equilibrium position moving away 

with a small velocity 
 
      ( ) ( ) ( ) ( )1 1 1x,0 B x,0 x,0 p x,0 0ξ = = ρ = =  

 

      ( ) ( )1v x,0 x,0 0
t

∂ξ
≠

∂
 =

 
 

 

Simplify the equations ( )  1B 0 not needed, redundant∇ ⋅ =

 
 Express all quantities in terms of ξ  

  
Mass: 

1
1 10 0v 0

t t
∂ρ ∂ ⎡ ⎤+ ∇ ⋅ ρ = → ρ + ∇ ⋅ ρ ξ =⎣ ⎦∂ ∂

0  ( )1 0ρ = −∇ ⋅ ρ ξ  

Energy: ( )1 0 0p p rp
t
∂

+ ξ ⋅ ∇ + ∇ ⋅ ξ =
∂

0 1 0 00
p p rp= −ξ ∇ − ∇ ⋅ ξ  

Faraday: ( )( )1 0B B
t
∂

− ∇ × ξ × =
∂

0  ( )1 0B B= ∇ × ξ ×  

Ampere 
10 1J Bμ = ∇ ×  ( )00 1J Bμ = ∇ × ∇ × ξ ×  

Momentum: 
1

0 10 1 0
v

J B J B
t

∂
ρ = × + × − ∇

∂ 1ρ  
 

 
 
 

( ) ( ) ( )
2

0 2
F C x,0 0, x,0 given, B.C.

tt

∂ ξ ∂ξ
ρ = ξ ξ = = +

∂∂
a.  

 

b. ( ) ( ) ( ) ( ) ( )0
0 0 0 a 0

0 0

B1
F B B B p

∇ ×⎡ ⎤ ⎡ ⎤ rpξ = ∇ × ∇ × ξ × × + × ∇ × ξ × + ∇ ξ ⋅ ∇ + ∇ ⋅ ξ⎣ ⎦ ⎣ ⎦μ μ
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Initial Value Approach 
 
 Solve the linear equations of motion 
 
 Advantages: a. directly gives time evolution of the system 
 
   b. fastest growing mode automatically appears 
 
   c. good stand for nonlinear calculations 
 

 Disadvantages: a. more information contained than required to determine     
  stability 

 
  b. extra work is required analytically and numerically to   

  determine this information 
 
  c. tough to find marginal stability 
 

Normal Mode Approach 
 
A more efficient procedure that treats one mode at a time 
 

1. The initial ( )x,0ξ  can be decomposed into normal modes 

 
2. Each mode is then analyzed separately 

 
3. To do this we fourier analyze in time 

 

 ( ) ( ) ( ) ( )i t i tQ x, t Q x e x, t x e− ω − ω= ξ = ξ  

 
4. Why is this legitimate? 
 
5. Note: The equations for 11 1,B , J ,pρ 1  do not have any time durations. Hence, 

no explicit  appear. We find (drop 0 subscript) ' sω
 

 ( )1ρ = −∇ ⋅ ρξ  

 
 1p p rp= −ξ ⋅ ∇ − ∇ ⋅ ξ  

 
 ( )1B B= ∇ × ξ ×  

 
 ( )0 1J Bμ = ∇ × ∇ ξ ×  
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 The momentum equation becomes (F  has no time derivation) 
 

 ( )2 F−ω ρξ = ξ  

 
 ( ) 1 11F J B J B pξ = × + × − ∇   

 
 We only need B.C.  eigenvalue  2→ω
 
 This is normal mode approach 
 
 Advantages: a. more amenable to analysis 
 
 b. directly addresses stability question (examine from ) ω
 
 c. more convenient numerically 
 
 Disadvantages: a. cannot be generalized for nonlinear calculation 
 
    b. still relatively complicated 
 

Properties of F  
 

1. To proceed further (variational approach, energy principle) we need to 
understand the properties of the force operator ( )F ξ  

 
2. We show that 

 
a. ( )F ξ  is self adjoint 

 
b.  is purely real 2ω

 
c. the normal modes are orthogonal 

 
3. Self adjointness (2 procedures) 
 

a. subtle but elegant 
 
b. direct but complicated 

 
The basic self adjoint property is associated with the conservation of energy; 
there is no dissipation in the system 

 
Self Adjoint Property   
 

a. ( ) ( )F dr F dη ⋅ ξ = ξ ⋅ η∫ ∫ r  

 
where ξ  and n  are any two arbitrary, independent sectors satisfying the 

boundary conditions 
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b. Simple self adjoint equations: 
2 2

2 2
dr , dr dr

x x

∂ ξ ∂
η ⋅ ξ η ⋅ = ξ ⋅ η

∂ ∂∫ ∫ ∫  

 

c. A non self adjoint equation: dr dr
x x

∂ξ ∂η
η ⋅ = − ξ ⋅

∂ ∂∫ ∫  

 
Direct Demonstration: Very Tedious Calculation 
 

1. Assume n n⋅ ξ = ⋅ η = 0  as plasma boundary (can be generalized) 

 

2. ( ) ( ) ( ) ( ) ( )
0

1
F dr dr B B rp⊥ ⊥

⎧⎪η ⋅ ξ = − ⋅ ∇ξ ⋅ ∇η + ∇ ⋅ ξ ∇ ⋅ η⎨
μ⎪⎩∫  

 

  ( ) ( )
2

0

B
2 2⊥ ⊥ ⊥ ⊥+ ∇ ⋅ ξ + ξ ⋅ κ ∇ ⋅ η + η ⋅ κ

μ
 

 

  ( ) ( ) ( )
2 2

0 0

4B B
: p

2⊥ ⊥ ⊥ ⊥

⎫⎛ ⎞⎪− ξ ⋅ κ η ⋅ κ + η ξ ∇∇ +⎜ ⎟⎬⎜ ⎟μ μ ⎪⎝ ⎠⎭
 

 
  is self adjoint by inspection: switch F ξ  and η , get the same result. 

 
Show that  is real 2ω
 

1. ( ) *2 F d−ω ρ ξ = ξ > ξ∫ r  

 

2. ( )
2 *2 dr F dr−ω ρ ξ = ξ ⋅ ξ∫ ∫  

 

3. Similarly ( )* *2* F d−ω ρ ξ = ξ > ξr∫  

 
    real operator 
 

4. ( )2 * *2* dr F dr−ω ρ ξ = ξ ⋅ ξ∫ ∫  

 
5. Subtract the equations 

 

 ( ) ( ) ( )2 * *2 2* dr dr F F⎡ ⎤− ω − ω ρ ξ = ξ ⋅ ξ − ξ ⋅ ξ⎢ ⎥⎣ ⎦∫ ∫  

 
 =0 because of the self adjoint property 
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6. Therefore 
 

•  2 2ω = ω *

 
•  is real 2ω

 
This has important consequences 
 

 
 
1. At marginal stability we note that by definition i 0ω =  

 
2. In ideal MHD  also!! This is a big help. There is no need to find  r 0ω = rω

 

3.  ( )2 F−ω ρξ = ξ  

 
     real  
           ξ  real 

     real 
 
 

4. That ξ  is real is not initially obvious ( ) ( ) i tr, t r e− ωξ =  ξ

 
5. We continue to allow complex ξ  to simplify fourier analysis in space, later on. 

 

 ( ) ( ) iim kzr r e τθξ = ξ  for example 
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Show that the Normal Modes are Orthogonal 
 

1. Consider two normal modes (assume real ξ  now) 

 

 ( )2
m m m nF d−ω ρ ξ = ξ > ⋅ξ∫ r  

 

 ( )2
m n n mF d−ω ρ ξ = ξ > ⋅ξ∫ r  

 
2. Subtract 
 

 ( ) ( ) ( )2 2
n m m n n m m ndr F F dr⎡ ⎤ω − ω ρ ξ ⋅ ξ = ξ ⋅ ξ − ξ ⋅ ξ⎣ ⎦∫ ∫  

 
 =0 by the self adjoint property 
 
3. For  2 2

n mn m,≠ ω ≠ ω
 

 n m dr 0ρ ξ ⋅ ξ =∫  orthogonal property 

 
 
4. For n=m choose 
 

 2
m dr 1ρ ξ =∫  orthonormal  

 
Spectrum of E 
 
 In general F  exhibits both discrete eigenvalues and continua 
 

 Spectrum: ( )
1

2 2 F
F

−
⎛ ⎞

−ω ρ ξ = ξ → ξ = ω +⎜ ⎟ρ⎝ ⎠
 initial conditions⎡ ⎤⎣ ⎦    

  

 The points where 
1

2 F
−

⎛
ω +⎜ ρ⎝ ⎠

⎞
⎟  do not exist define the spectrum of F  
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Examples 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Continua significantly complicate MHD analysis for general initial value problems. 
They require more than just picking up the pole contributions from the displace 
transform.  
 
However the continua lie on stable side of the spectrum and thus do not affect 
stability.  
 
Accumulation points: these provide a simple necessary condition for stability. 
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