
22.615, MHD Theory of Fusion Systems 
Prof. Freidberg 

Lecture 12: PF Design I - The Plasma 
 
Introduction 
 

1. The PF system in a tokamak is one of the most critical design components, as 
it is responsible for centering the plasma, shaping the plasma, and, in the 
case of an ohmic plasma, establishing the pulse length. 

 
2. The task is in general quite complicated since the plasma properties vary with 

time. Also, there are significant transient eddy currents in the vacuum 
chamber early in the discharge. 

 
3. The task is further complicated by the need for high fields, leading to critical 

problems in magnet stress and cooling. 
 

4. Finally, we in general desire elongated plasmas. However, such configurations 
are usually MHD unstable to vertical-like displacements. The PF system also 
has the responsibility of providing feedback control against such modes. 

 
5. One of the great successes of the theory program is development of MHD 

equilibrium analysis to address these issues. 
 
The Classic, Well Posed Approach to PF Design  
 

1. Intuitively, we can see that the following approach represents a well posed 
procedure for analyzing the PF system. 

 
2. Imagine a PF system consisting of an OH transformer and a series of EF coils 

for positioning and shaping.  
 

3. Assume that the coil currents are specified as a function of time as well as the 
plasma free functions ( ) ( ), , , .p t F tψ ψ  

 
4. This should and does determine the evolution of the system. 

 
5. The solution to this problem would give the profiles (as a function of R, ) in 

the plasma at each instant of time. 
 Z

 
6. It would also give the plasma shape as a function of time as this formulation 

represents a free boundary problem. (Across the plasma surface, two 

conditions, not one, must be satisfied: n B 0⋅ =  and 2
02 0p B⎡ ⎤+ =⎣ ⎦μ .) 

 
7. A final output is the plasma current Ip(t) driven by the OH transformer. 

 
8. A number of numerical codes have been developed to self-consistently 

address this problem. TSC is one such notable code. 
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9. The classic approach has the advantage of being able to specify the coil 
currents (or voltages) as a function of time, an important engineering 
consideration. 

10. Also, to within numerical accuracy it generates the self-consistent solution to 
the problem. 

 
11. There are a number of practical disadvantages to the classic approach. 

 
a. The codes take far too long to run, making parametric studies difficult to 

carry out. 
 
b. It is much harder to calculate a free boundary than a fixed boundary 

equilibrium. More iterations are required, as the plasma shape is an 
additional unknown function. 

 
c. The plasma current that comes out may not be the one you want. This 

requires further iteration with the OH programming. 
 

d. The plasma shape evolution that comes out may not be the one you want. 
This too requires further, sometimes quite unintuitive iteration on the 
multi-coil EF system. 

 
e. Unless precautions are taken, the numerical solutions may be dominated 

by vertical instabilities. 
 

12. Codes of this type would appear to be more useful once the coil currents 
have by one means or another, been predetermined. 

 
An Efficient Inverse Approach to PF Design 

 
1. All of the problems described above can be resolved by adopting an 

alternate inverse approach to PF design. 
 
2. The end result is again a numerical code, but one which runs far faster than 

the classic codes and allows the engineer/physicist to specify more 
meaningful physical quantities. 

 
3. Specifically, the user specifies a desired time evolution of plasma current, 

plasma shape, and p, F profiles. The code quickly calculates a best fit to the 
desired OH current and EF currents, including if desired, the effects of 
vacuum chamber eddy currents. 

 
4. In this and the next lecture we describe how the procedure can be 

implemented. 
 

5. There are two basic components to the formulation. 
 

a. A fast fixed boundary Grad-Shafranov solver. 
 
b. A fast coil current solver. 
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The Grad-Shafranov Solver 

 
1. A fast Grad-Shafranov solution is difficult to compute for several reasons. 
 

a. The equation is a nonlinear PDE. 
 
b. The natural mathematical constants are not the same as the desired 

physical constants. This makes information counting somewhat subtle 
and ultimately leads to additional iteration. 

 
2. Consider first the practical mathematical formulation that addresses 

problem 1b.  
 
3. The issues become apparent once appropriate normalized variables are 

introduced. 
 

4. Keep in mind that by specifying plasma shape evolution as an input, we are 
concerned with fixed boundary equilibria. As stated, this is much simpler 
than the general free boundary problem. 

 
5. Recall that the exact Grad-Shafranov equation is given by 

 
* 2

0
∂ ∂

Δ ψ = − −
∂ψ ∂ψ
p F

R Fμ  

 

where ( )* 2Δ ψ = ∇ ⋅ ∇ψR R2  and ( ) ( ), , ,ψ ψp t F t  are free functions of ψ  and 

t, specified as inputs either by intuitive guessing or by separately solving 
the transport evolution equations. The goal is to find ( ), ,ψ R Z t . 

   
6. Introduce normalized coordinates as follows. 
 
 ( ) ( ), ,b t R Z tψ = ψ ψ  

 
  0R R ax= +
 
  Z ay=
 

 ( ) ( ) ( )0, ,p t p t h tψ = ψ  

 

 ( ) ( ) ( ) ( ) ( )2 2 2
0 0 0, 1 2F t R t B t k t f t⎡ ⎤ψ = + ψ⎣ ⎦,  

 
 where 
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a. ( , ,R Z tψ )  is the new poloidal flux variable normalized so that 0ψ =  on 

the magnetic axis and 1ψ =  on the plasma surface. (One of these is 
always arbitrary.) 

 
b. ( )b tψ  is the poloidal flux on the boundary. While it is natural to specify 

( )b tψ  mathematically, in practice we wish instead to specify ( ).pI t  One 

cannot simultaneously specify bψ  and I as this overdetermines the 

system. Thus, ( )b tψ  must be viewed as an unknown, to be determined 

in terms of ( )pI t . 

 
c. ( )0R t  is the geometric center of the plasma. 

 
d.  is horizontal radius of the plasma. When ( )a t 0y = , the inner and outer 

surfaces of the plasma are given by 0R a±  corresponding to  1.x = ±
 

e. ( )0p t  is the pressure on axis, assumed to be known from the input 

data. 
 

f. ( )0B t  is the vacuum toroidal field at 0R R= , also known from the input. 

 
g. ( )0k t  is a parameter representing the plasma dia- or paramagnetism. 

We shall see that ( )0k t  is actually an output of the calculation. If we 

give p and I, the dia- or paramagnetism is a determined quantity. If we 
give p and , we cannot specify Ip or 0k bψ . 

 

h. ( ,h tψ )  and ( ),f tψ  are input profile functions normalized so that 

 
  ( ) ( )0, 0, 1h t f t= =

=

 magnetic axis 

 
   plasma boundary ( ) ( )1, 1, 0h t f t=

 
7. The Grad-Shafranov equation becomes 
 

 
2

* 0
0 2 2

0 0

2
2

∂ ∂
Δ ψ = − −

∂ψ ∂ψ

f R
C

l R

β h
 

 
 with 
 

 
2 2

*
2 2

1
1

∂ ψ ∂ ψ ∂ ψ
Δ ψ = − +

+ ∈ ∂∂ ∂x xx y

2

 

 

 ( )
2 2

0
0 2

0

8 a p
t

I

π
=β

μ
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( )0
0 0

4 bl t
IR

πψ
=

μ
 

 

( )
2 2 2

0 0 0
0 22 b

k B a R
C t =

ψ
 

 
8. Note that 0β  can be assumed as a known input since a, p0, and I are inputs. 

In contrast l0 is an unknown constant since it involves bψ . Similarly C0 is 
unknown since it involves 0, bk ψ . 

 
9. The parameter l0 is a measure of the normalized internal inductance. Its 

value can be expressed in terms of 0β  and C0 by assuming that the total 

current ( )I t  is a known input quantity. 

 
a. ( )I t J dS= ∫ φ  

 
b. Replace RJφ  by the right hand side of the Grad-Shafranov equation,    

yielding  
 

c. 0 0 0
2

0 0

1
2 2

∂ ∂
= − −

π ∂ψ ∂ψπ∫ ∫
C R f h

dS dS
l R l

β
 

 
10. The value of C0 is more subtle. It is related to the value of k0 and is 

ultimately determined by the fact that ψ  is a normalized quantity varying 

between 0 < ψ < 1. In particular requiring (1) regularity, (2) 0ψ =  on axis, 

and (3) 1ψ =  on the surface overdetermines the system and solutions are 
possible only for a special value of C0. 

 
11. To see this explicitly consider a large aspect ratio tokamak with 

1h f= = − ψ . Let cos ,y = sin x = ρ θ ρ θ.  The Grad-Shafranov equation 
becomes  

 

0
0 2

0

1
2p C

l

β
ρ ρ ρ

⎛ ⎞⎛ ⎞∂ ∂ψ
= +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 

 
12. The general solution is 
 

 
2

0
1 2 2

0

ln
2

⎛ ⎞
ψ = + + +⎜ ⎟⎜ ⎟

⎝ ⎠
0C C C

l

β ρρ  

 
13. Regularity and the condition ( )0 0ψ =  imply that 1 2 0C C= =  

 
14. In order for ( ) 01 1,Cψ =  must satisfy 

22.615, MHD Theory of Fusion Systems                                                                                 Lecture 12   
Prof. Freidberg                                                                                                              Page 5 of 9 

 



 

 0
2
0

2+ =0C
l

β
 

 
15. The flux–current constraint reduces to 

 

 0
0 2

0 0

1 1
2

C
l l

β⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
 

16. This leads to 
 
  0 1l =
 
 0 02C = − β  
 
17. The general case is completely analogous. 
 
18. A simple way to find  in the general case is by taking a moment of the 

Grad-Shafranov equation. Actually any moment will suffice if the exact 
solution is known. For an approximate solution, the energy moment is quite 
accurate. Multiply the Grad-Shafranov equation by 

0C

( ) 21 − ψ R  and integrate 

over the plasma volume. 
 

 ( ) ( )
22

0 0 0
0 2 2

0

1
1 r 1 r

2
⎛ ⎞∂ ∂

− ψ + − ψ = − ∇ψ⎜ ⎟∂ψ ∂ψ ⎝ ⎠
∫ ∫ ∫

R Rf h
C d d

RR l

β
rd    

 
19. The fact that ψ  must by definition lie between 0 and 1 determines the 

appropriate normalization condition to evaluate . 0C
 
Summary of the Normalized Equations 
 

1. Inputs: ( ) ( ) ( ) ( ) ( )0 0 0, , , , ,p t I t R t a t B t other shape parameters 

( ) ( ) ( ) ( ), , , , ,t t f t h tκ δ ψ ψ  

 
2. Solve 

 
2

* 0
0 2 2

0 0

2
2

∂ ∂
Δ ψ = − −

∂ψ ∂ψ

f R
C

l R

β h
 

 
0 0 0

2
0 00

1
2 2

∂ ∂
= − −

π ∂ψ ∂ψπ∫ ∫
C R f R

dS dS
l R Rl

β h
 

 

( ) ( )
22

0 0 0
0 2 2

0

1
1 r 1 r

2
⎛ ⎞∂ ∂

− ψ + − ψ = − ∇ψ⎜ ⎟
∂ψ ∂ψ ⎝ ⎠

∫ ∫ ∫
R Rf h

C d d
RR l

β
rd  
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3. Calculate 
 

a. ( ), ,x y tψ  

 
b. ( )0l t  

 
c.  ( )0C t

 
Fast Solution using Inverse Coordinates and Variational Techniques 

 
1. The solution to the Grad–Shafranov equation can be found quite accurately 

and extremely quickly using inverse coordinates and variational techniques. 
 
2. Grad–Shafranov variational procedure 

 

( )20 0 0
0 2

00

2
2

2

⎡ ⎤∇ψ⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎣ ⎦

∫
R R R

L dxdy C f h
R R l

β
R

 

 
3. Vary L 
 

2
*0 0

0 2 2
0 0

2
2

⎡ ⎤∂ ∂
δ = − Δ ψ + + δψ⎢ ⎥

∂ψ ∂ψ⎢ ⎥⎣ ⎦
∫

R f R h
L dxdy C

R l R

β
 

 
4. Introduce inverse coordinates, with variational parameters. Let 2ψ = ρ  and 
 

( ) ( ) ( )2
0 1 cos + six x , D n⎡ ⎤= = σ − + ⎣ ⎦ρ μ ρ ρ μ ρ μ  

 

( ) ( ) 2
0 0 sinay = y ⎡ ⎤= κ + κ − κ⎣ ⎦ρ, μ ρ ρ μ  

 
( ) ( )2 2

1 11 sin aD −⎡ ⎤= + −⎣ ⎦ρ ρ η η ρ 1 δ

,

 

 
where  and  are inputs representing the surface elongation and 
triangularity. The quantities 

κa aδ

0 0,σ κ  and 1η  are variational parameters 
obtained by extermizing L. Only a few parameters are needed, because the 
interior surfaces in general follow the shape of the plasma surface. 

 
5. The solution to the Grad-Shafranov equation reduces to the solution of five 

simultaneous algebraic equations, three for the variational parameters and 
two for the extra constraints. 

 
6. Variational equations: denote 0 0 1, , ,σ κ η  by , 1 3.α ≤ ≤j j  
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0 Lψ
δ δψ

= =
δα δα∫

j j

L
d dρ μ  

 

( )2 20 0 0
0 2

00

L 2 2ψ

⎛ ⎞⎡ ⎤ ⎡ ⎤ 0∂ ∂ ∂
= + − + + Δ +⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎜ ⎟∂ Δ ∂ Δ ∂∂⎣ ⎦ ⎣ ⎦ ⎝ ⎠

R R R f R
x y x x y y C

R R R l
μ μ μ ρ μ ρ

βρ ρρ ρ ∂h
Rρ μ ρρ

 

 
1

j j

x y
y xμ μ

⎛ ⎞δψ ∂ ∂
= −⎜ ⎟⎜ ⎟δα Δ ∂α ∂α⎝ ⎠j

 

 
 x y y xΔ = −ρ μ ρ μ  

 
7. Constraint equations 
 

 0
0 0 02

0 0

1
0+ + =C S U

l l

β
 

 

 ( )2 20
0 1 12

0

1 0R
C S U d d x y

Rl
+ = − +

π Δ∫ μ μ
β

ρ μ  

 
 where  
 

 
( )2

0
1 -1

2 2

n

n
R f

S d d
R

∂
= Δ

π ∂∫
ρ

ρ μ
ρ ρ

 

 

 
( )2

0

1 -1
2 2

n

n
R h

U d d
R

ρ
ρ μ

ρ ρ
∂

= Δ
π ∂∫  

 
8. Solving five nonlinear algebraic equations with good starting guesses is a 

simple computational task, requiring only .02 seconds on a Cray and about 
10-20 seconds on a Mac. 
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