22.615, MHD Theory of Fusion Systems Prof. Freidberg

Lecture 11: Flux Conserving Tokamak - Con'd

A Simple Approximation

- 1. Instead of choosing $F(\psi)$ so $q(\psi)$ is the same everywhere, we choose a simpler $F(\psi)$ so that only q(0) and q(a) remain the same (as β_t increases).
- 2. Choose $dp/d\psi = \text{const}$, $dF^2/d\psi = \text{const}$. This is the same model we have already investigated.
- 3. The model has only two free parameters: $A, C \rightarrow \beta_t, q_*$.
- 4. Thus, as β_t increases, there is only one degree of freedom, q_* , remaining.
- 5. Therefore, we cannot adjust q_* so that both q_0 and q_a remain fixed: this would be an overdetermined system.
- 6. We make an ultra simple approximation and choose q_* so that only q_a remains fixed. This prevents the formation of a separatrix which requires $q_a \rightarrow \infty$.

HBT Equilibrium

$$\mu_0 p = \beta_t B_0^2 \left(1 - \rho^2 \right) \left[1 - v \rho \cos \theta \right]$$

$$B_{\theta} = \frac{\epsilon B_0}{q_*} \left[\rho + \frac{v}{2} (3\rho^2 - 1) \cos \theta \right]$$

$$\hat{B}_{\theta} = \frac{\epsilon B_0}{q_{\star}} \left[\frac{1}{\rho} + \frac{\nu}{2} \left(1 + \frac{1}{\rho^2} \right) \cos \theta \right]$$

$$q_a = \frac{q_*}{\left(1 - v^2\right)^{1/2}}$$

$$v = \frac{\beta_t q_*^2}{\epsilon}$$

$$\rho = r/a$$

- 1. HBT: Express all quantities in terms of β_t , $q_\star \sim 1/I$
- 2. FCT: Express all quantities in terms of β_t , q_a (held fixed). Examine the behavior as β_t increases. Are there any equilibrium limits?

Procedure

1. Define $v_* = \beta_t q_a^2 / \epsilon \propto \beta_t$ since q_a is held fixed in the FCT.

2. v_* is the heating parameter: as β_t increases, v_* increases.

3. For the HBT: $v = \beta_t q_{\star}^2 / \epsilon \propto \beta_t$ for fixed *I*.

4. v is the heating parameter for fixed I: as β_t increases, v increases.

Relation between ν and ν_*

1.
$$v = \frac{\beta_t q_*^2}{\epsilon} = \frac{\beta_t q_a^2}{\epsilon} \frac{q_*^2}{q_a^2} = v_* \left(1 - v^2 \right)$$

2.
$$v^2 + \frac{v}{v_*} - 1 = 0$$

$$\nu = \frac{2\nu_*}{\left(1 + 4\nu_*^2\right)^{1/2} + 1}$$

Compute the Physical Quantities in Terms of ν_{\star} and Compare with the HBT

1. $I \propto 1/q_*$

a. HBT:
$$\frac{1}{a_{\star}}$$
 = const. fixed /

b. FCT:
$$\frac{1}{q_*} = \frac{1}{q_a} \frac{1}{(1 - v^2)^{1/2}} = \frac{1}{q_a} \left(\frac{v_*}{v}\right)^{1/2}$$

$$\frac{1}{q_*} = \frac{1}{q_a} \left[\frac{1 + \left(1 + 4\nu_*^2\right)^{1/2}}{2} \right]^{1/2}$$

 $2. B_v$

a. HBT:
$$B_V = \frac{\mu_0 I}{4\pi R_0} \beta_p = \frac{\epsilon B_0}{q_*} \frac{\epsilon \beta_p}{2} = \frac{\epsilon B_0}{2} \frac{v}{q_*}$$

b. FCT:
$$B_{v} = \frac{\epsilon B_{0}}{2} \frac{v}{q_{*}} = \frac{\epsilon B_{0}}{2} \frac{1}{q_{a}} \left[\frac{1 + \left(1 + 4v_{*}^{2}\right)^{1/2}}{2} \right]^{1/2} \frac{2v_{*}}{1 + \left(1 + 4v_{*}^{2}\right)^{1/2}}$$

$$B_{V} = \frac{\epsilon B_{0}}{2} \frac{v_{\star}}{q_{a}} \left[\frac{2}{1 + \left(1 + 4v_{\star}^{2}\right)^{1/2}} \right]^{1/2}$$

- 3. ρ_s
 - a. HBT: $\rho_s = \frac{1}{\nu} \left[1 + \left(1 \nu^2 \right)^{1/2} \right]$
 - b. FCT: $\rho_s = \frac{1 + \left(1 + 4v_\star^2\right)^{1/2}}{2v_\star} \left[1 + \left(\frac{2}{1 + \left(1 + 4v_\star^2\right)^{1/2}}\right)^{1/2} \right]$
- 4. Define the plasma evolution in β_t q_\star space as β_t increases
 - a. HBT: $\frac{\beta_t q_*^2}{\epsilon} = v$

 $q_* = \text{const.}$

b. FCT:
$$\frac{\beta_t q_*^2}{\epsilon} = \nu_* \tag{1}$$

$$\frac{1}{q_*} = \frac{1}{q_a} \left[\frac{1 + \left(1 + 4\nu_*^2\right)^{1/2}}{2} \right]^{1/2} \tag{2}$$

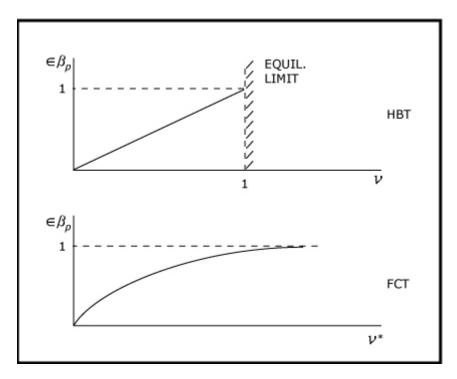
c. Solve (2) for v_* and substitute into (1) to give $\beta_t = F(q_*)$

$$v_{\star}^{2} = \frac{q_{a}^{2}}{q_{\star}^{2}} \left[\frac{q_{a}^{2}}{q_{\star}^{2}} - 1 \right]$$

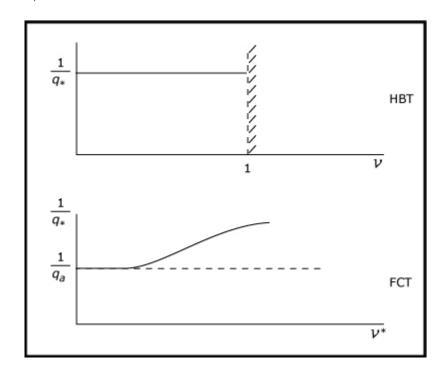
$$\frac{\beta_t q_a^2}{\epsilon} = \left[\frac{q_a^2}{q_*^2} \left(\frac{q_a^2}{q_*^2} - 1 \right) \right]^{1/2}$$

Plot the Results

1.

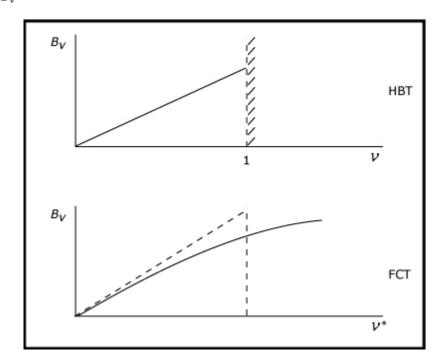


2. $I \propto 1/q_*$



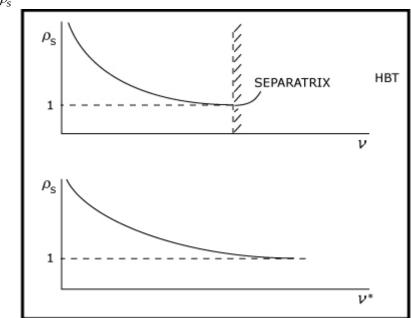
As ν_* increases, I increases. This helps to prevent the separatrix from moving onto the plasma surface since less vertical field is required to maintain toroidal force balance.

3. *B*_v



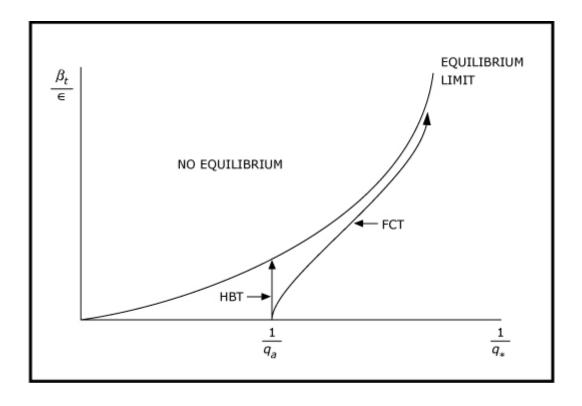
Less vertical field is required. The separatrix stays away from the plasma surface.

4. ρ_s



No equilibrium limit. The separatrix does not move onto the plasma surface.

5. β_t vs. $1/q_*$



Summary

- 1. General HBT: covers all permissable β_t/ϵ , q_\star space
- 2. HBT at fixed /: exhibits an equilibrium limit
- 3. FCT at fixed q_a : no equilibrium limit