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FINAL EXAM


1. Short Answer (18 points) 

(a)	Write the formulas for the electron plasma frequency and the ion plasma frequency (be 
sure to include any dependence on ionic charge, Zi). You may use the expression for the 
square if so noted. 

(b) Write the formula for the ion cyclotron frequency. 

(c) Write the formulas for the electron Debye length and the ion Debye length. 

(d) True or False. The Vlasov equation describes an incompressible flow in phase space. 

(e)	 True or False. The Vlasov equation describes the conservation of particles in self con-
sistent phase space flow. 

(f)	 TrRue or False. The Vlasov equation describes a fluid whose fluid dynamic flow, V = 
1 d3vvf , is incompressible, ∇ · V = 0. n R 

(g) True or False. The Vlasov equation conserves entropy, S = − d3vf ln f . 

(h) True or False. The Vlasov equation is reversible. 

(i)	 True or False. The Vlasov equation relaxes a (spatially homogeneous) distribution to 
the Maxwellian velocity dependence for long times, t →∞. 

2.	 Wave Energy and Dissipation (10 points): The dielectric response function,  (k, ω), for 
a given problem is an analytic function of frequency, ω. Show how to calculate the real and 
imaginary parts of the frequency, ω = ωr + iγ, assuming that the growth/damping rate, γ, is 
small compared to the real frequency, ωr, using only the knowledge of the dielectric function, 
 (k, ωr ), for real frequencies. Give a physical interpretation of your result in terms of wave 
energy and dissipation. Evaluate the (weak) dissipation for the dielectric given in equation 
(1) below. 

3.	 Electron Beam Instabilities (32 points): Consider an electron ion plasma created by in-
jecting 2 electron beams at energies of Eb1 = 10 KeV and Eb2 = 100 KeV into a Te ' 1 KeV 
plasma (you may consider the ions to be cold and at rest dynamically). Assume that each 
beam has a “temperature" spread in energy about its mean value of, Tb ' 1 KeV , and that 
both beams have similiar densities that are small compared to the background plasma elec-
tron density. The distribution is shown schematically in the drawing with labels attached to 
various features of the distribution function. 
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Evaluate the labels, ve, vb, Ub1, Ub2 shown on the drawing and indicate which quantities, if 
any, are equal. You may take, vm1 = Ub1 − αvb, and, vm2 = Ub2 − αvb, where the quantity, 
α, can be treated as an order unity constant for the calculations below (and if you have time 
after the rest of exam is done, you can evaluate, α, to get a perfect score on this portion of 
exam!). You may assume positive wavenumber, k, throughout. 

Indicate any phase velocity range (or ranges) where unstable waves exist. Write down any 
inequalities that characterize these modes (i.e. relations such as, ω/k À vb, although this 
particular relation may not be relevant). Calculate the (dimensionless) wave energy and 
growth rate of the most unstable mode in each band (you may assume weak dissipation). 
Leading order calculations are acceptable in all cases. Recall that the dielectric response 
function is given by, 

ω2 Z 
pe 1 dF 

 (k, ω) = 1 − 
k2 du

u − ω/k du 
(1) Z L 

1 =  du F (u) 

Which mode dominates for long times in the linear regime? 

4. Ion Acoustic Waves (15 points): Start from the collisionless dielectric function for an 
electron-ion plasma in thermal equilibrium, · 
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where, λi, λe, vi = 
p
2Ti/mi, ve = 

p
2Te/me, are the usual Debye lengths and thermal 

velocities, and show that for waves in the range, vi ¿ ω/k ¿ ve, the reactive dielectric 
response can be written, 

1 ω2 
pi

R (k, ω) ' 1 +  
k2λ2 − 

ω2 
e 

Then show that for long wavelength waves, k2λ2 
e ¿ 1, this leads to the ion acoustic dispersion 

relation, 
2ω2 ' k2 cs 

with, c2 
s = Te/mi. Show that these wave are quasineutral (for, k2λ2 ¿ 1).e 

5.	 Ion-electron collisions (10 points): The energy exchange portion of the electron-ion 
collision operator can be written, for Maxwellian ions, as, · 

CE me 3 1 ∂ Ti ∂ 1 ∂ 
ei (fe) =  νei 

2mi 
ve v2 ∂v 

+ 
mev2 ∂v v ∂v 

¸ 

fe (2) 

R 
2 mev

2 , of this operator, for Maxwellian electrons, gives,The energy moment, d3v 1 r 
me 2 −νei n (Te − Ti) 
mi π 

Now consider the ion-electron collision operator, Cie (fi, fe). Use a fundamental property 
of the collision operator to write down or derive an expression for the energy moment,R 

2 miv
2 , of the ion-electron collision operator, Cie (fi, fe), assuming Maxwellian distri-d3v 1 

butions for both ions and electrons. State explicitly the collision operator property that you 
used and discuss the physical implications of the result you have derived. 

6. Thermal Equilibrium (15 points): 

(a)	 (5 points) Show that the Maxwellian velocity distribution is the result of maximizing 
the entropy, Z 

S = − d3vf ln f R 
subject to the constraints of fixed particle number, n = d3vf , and fixed energy, E = R 
d3v 1 

2 mv2f . R 
(b)	 (5 points) What is the effect on the entropy, S = − d3vf ln f , when the distribution 

evolves according to, 
∂f 

= C (f, f )
∂t 

where the Coulomb collision operator is given by, Z 
C (f, f ) =  Γ 
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(c) (5 points) Show that, with the energy collision operator, CE 
ei (fe), given by equation 

(2), the steady state solution to, 

∂fe 
= CE 

∂t ei (fe) 

is given uniquely by, 

fe (v) =  const. × exp 

µ
− 
1 
mev 2/Ti

¶
2 

Discuss in physical terms the two processes described by equation (2) that balance to 
give this thermal equilibrium state. 
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