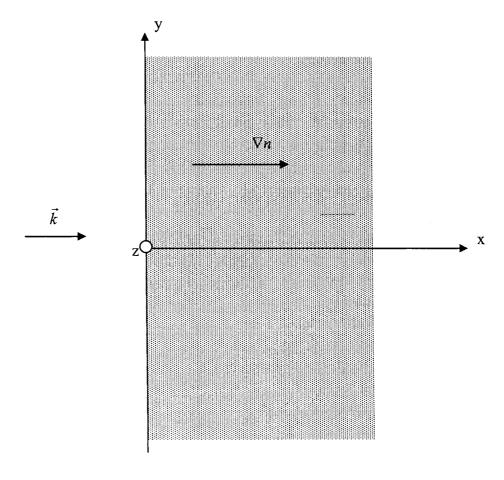
Subject 6.651J/8.613J/22.611J 21 November 2006 R. Parker Due: 30 November 2006


Problem Set 8

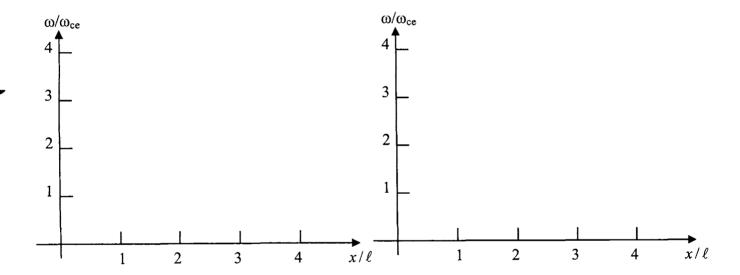
Problem 1.

Using your favorite plotting software (Matlab, IDL, etc.) prepare a graph accurately depicting regions of propagation and cutoff in the log $n^2-log(\omega/\omega_{ci})$ plane for two sets of Alcator C-Mod parameters: a) $n_e{=}2x\,10^{20}$ m $^{-3}$, B=5.5 T and b) $n_e=5x\,10^{20}$ m $^{-3}$, B=5.5 T. In both cases assume that the ions are deuterium. In the plots, set the abscissa range to $-2 < log(\omega/\omega_{ci}) < 4$ and the ordinate range to -2 < log $n^2 < 3$.

Problem 2.

A plane wave is incident on a plasma slab, as indicated schematically in the figure below.

The plasma density is uniform an the y- and z-directions, but varies in the x-direction and is given by


$$n=n_0\frac{x}{\ell}$$

where ℓ , the gradient scale length, is long compared to the wavelength. i.e., $k\ell >> 1$, so that the local dispersion relation can be used in solving this problem. There is a magnetic field in the z-direction, $\vec{B} = \hat{z}B_0$ where B_0 is constant. The parameters are such that

$$\omega_{pe}(n=n_0)=\omega_{ce}.$$

Throughout this problem, consider only the electron response to the wave field.

- a) On the left graph below, indicate the region(s) of propagation up to $x/\ell = 4$ for the ordinary mode.
- b) On the right graph below, indicate the region(s) of propagation up to $x/\ell = 4$ for the extraordinary mode.
- c) What is the maximum depth of propagation of the extraordinary mode for frequencies less than the electron cyclotron frequency?

