Fall Term 2002 Introduction to Plasma Physics I

22.611J, 6.651J, 8.613J

Problem Set #1

1. Distribution functions and averages: The average of a quantity, $G(\mathbf{v})$, over a distribution function, $f(\mathbf{v})$, is defined as,

$$\langle G \rangle = \frac{\int d^3 v G(\mathbf{v}) f(\mathbf{v})}{\int d^3 v f(\mathbf{v})}$$

The Maxwellian distribution, in three dimensions, is,

$$f(\mathbf{v}) = f(v_x, v_y, v_z) = n \left(\frac{m}{2\pi T}\right)^{3/2} \exp(-\frac{mv^2}{2T})$$

Note that the isotropy of this distribution means that all Cartesian coordinates are equivalent; there is no preferred direction.

- (a) Prove that the form of f is correctly normalized, i.e. that, $\int f d^3 v = n$. Evaluate averages of the following:
- (b) A specific Cartesian velocity direction: $\langle v_x \rangle$
- (c) The square velocity: $\langle v^2 \rangle$, and hence the average particle energy, $\langle \frac{1}{2}mv^2 \rangle$
- (d) The average speed, $\langle |v| \rangle$
- 2. Basic facts you need to know. Find out, write down, and memorize (to 2 significant figures) the values of the following quantities: (You may use either SI or CGS units, but I will use CGS for lecture, so these are recommended. . .)
 - (a) The speed of light
 - (b) The charge on the electron
 - (c) The mass of the electron, $m_e c^2$, in MeV.
 - (d) The mass of the proton, $m_p c^2$, in MeV.
 - (e) The temperature in Kelvins, equal to 1 eV.
 - (f) The particle density of the air you breathe $(cm^{-3}).$
 - (g) The density of particles in water.

- (h) The ionization potential of the hydrogen atom: calculate, $E_I = \frac{1}{2} \frac{m_e c^2 e^4}{\hbar^2 c^2}$.
- (i) The relationship between magnetic units of Gauss and Tesla.
- (j) The relationship between particle density in units of cm^{-3} and m^{-3} . Here are two more fundamental physics constants you might find useful:
- (k) Planck's constant in Atomic units: $\hbar c \cong 1970 \ eV \mathring{A} = 1.97 \times 10^{-5} \ eV cm$
- (l) The fine structure constant: $\frac{e^2}{\hbar c} = \frac{1}{137}$
- 3. Suppose the degree of ionization of a gas discharge is governed by the Saha equation,

$$\frac{n_e n_i}{n_0} = \frac{4}{\left(4\pi\right)^{5/2}} \left(\frac{m_e c^2}{\hbar c} \frac{e^2}{\hbar c}\right)^3 \left(\frac{T}{E_I}\right)^{3/2} \exp\left(-\frac{E_I}{T}\right)$$

and the Debye length is small relative to the discharge size. Calculate approximately the temperature at which the gas is 50% ionized if, $E_I = 13.6 \ eV$, and its total pressure is equal to one atmosphere.

4. Consider a plasma in which both electrons and (singly-charged) ions adopt thermal distributions with Boltzmann factors governed by the respective temperatures, T_e , and, T_i , which are different, in general. Show that a point charge, q, immersed in this plasma gives rise to a potential as a function of distance, r, from the charge:

$$\phi = \frac{q}{r} \exp\left(-r/\lambda\right)$$

in the approximation, $e\phi \ll T_e, T_i$. Obtain an expression for λ . Does the situation of cold ions, $T_i \ll T_e$, correspond to the idealized case of "immobile" ions sometimes referred to in textbooks?

- 5. Consider a charged sphere of radius, a, located far from all other objects in a plasma that has immobile ions and mobile electrons of temperature, T_e . The electrons can be assumed to adopt a Boltzmann distribution, $n = n_0 \exp(e\phi/T_e)$, where, ϕ , is the electrostatic potential and, n_0 , is the background density of the singly charged ions.
 - (a) Calculate the potential distribution in the plasma when the potential on the sphere is, ϕ_s , in the approximation, $e\phi_s \ll T_e$.
 - (b) Sketch the form of, ϕ , as a function of radius, r, in the two cases, $\lambda_D \ll a$, and, $a \ll \lambda_D$
 - (c) Calculate the charge on the sphere, and hence its capacitance in the presence of the plasma. (*The charge can be determined from the surface electric field*).
 - (d) Evaluate the capacitances when, a = 10 cm, for the case, $T_e = 1 \text{ KeV}$, and (i) $n_0 = 10^{14} \text{ cm}^{-3}$, and (ii) $.n_0 = 10^6 \text{ cm}^{-3}$, and compare with the capacitance in vacuum.