R. Parker Due: 8 December 2005

Problem Set 9

Problem 1.

In this problem we'll develop a general (if a bit formal) derivation of the Vlasov equation.

As we discussed in class, conservation of particles requires

$$\frac{D(f\Delta \vec{r}\Delta \vec{v})}{Dt} = 0,$$

where the symbol D/Dt means that the time derivative is to be taken along a particle orbit in phase space. Specifically,

$$\frac{D(f)}{Dt} = \lim(\Delta t \to 0) \frac{f(\vec{r} + \vec{v}\Delta t, \vec{v} + \vec{a}(\vec{r}, \vec{v}, t)\Delta t, t + \Delta t) - f(\vec{r}, \vec{v}, t)}{\Delta t}$$

a) Show that the RHS of this expression reduces to

$$\frac{\partial f}{\partial t} + \vec{v} \cdot \nabla f + \vec{a} \cdot \nabla_v f$$

b) Now consider the term

$$\frac{D(\Delta \vec{r} \Delta \vec{v})}{Dt} = \lim(\Delta t \to 0) \frac{\Delta \vec{r} \Delta \vec{v}_{\vec{r} + \vec{v} \Delta t, \vec{v} + \vec{a} \Delta t, t + \Delta t} - \Delta \vec{r} \Delta \vec{v}_{\vec{r}, \vec{v}, t}}{\Delta t}$$

As indicated, the rate of change of the phase space volume is to be calculated along a particle trajectory in phase space. For small Δt along this trajectory, the particle orbit is simply given by

$$\vec{r}' = \vec{r} + \vec{v}\Delta t$$
$$\vec{v}' = \vec{v} + \vec{a}(\vec{r}, \vec{v}, t)\Delta t$$

These equations define a simple transformation of variables between the \vec{r} , \vec{v} and $\vec{r'}$, $\vec{v'}$ coordinates. Accordingly, a well-known mathematical result is that the volume elements are related by the Jacobian of the transformation defined as the determinant of the matrix

$$\left[c_{ij} = \frac{\partial x'_j}{\partial x_i}\right]$$

Use this result to calculate $\frac{D(\Delta \vec{r} \Delta \vec{v})}{Dt}$ and complete the derivation of Vlasov's equation.

Problem 2.

In deriving the fluid energy equation in class, we got to the following point:

$$\frac{\partial}{\partial t} \left(\frac{1}{2} m n u^2 + \frac{3}{2} n kT \right) + \nabla \cdot \left(\frac{1}{2} m n u^2 \vec{u} + \frac{5}{2} n kT \vec{u} + \vec{\Pi} \cdot \vec{u} \right) + \nabla \cdot \vec{q} - q\vec{E} \cdot n\vec{u} = \frac{m}{2} \int d\vec{v} v^2 \sum_{\beta} C(f, f_{\beta}) \cdot d\vec{v} \cdot \vec{v} = \frac{m}{2} \int d\vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v} + \vec{u} \cdot \vec{v} \cdot \vec{v} + \vec{v} \cdot \vec{v} \cdot \vec{v} \cdot \vec{v} + \vec{v} \cdot \vec$$

It was then stated that this equation could be transformed into the simpler form:

$$\frac{3}{2}n\frac{dkT}{dt} + p\nabla \cdot \vec{u} = -\prod_{ij}\frac{\partial u_i}{\partial x_j} - \nabla \cdot \vec{q} + Q,$$

where the summation convention applies and

$$Q = \frac{m}{2} \int d\vec{w} w^2 \sum_{\beta} C(f, f_{\beta}) \,.$$

Show that the second form follows from the first by using the continuity equation, the result of dotting the momentum equation with \vec{u} , and the identity

$$-\vec{u}\cdot(\nabla\cdot\vec{\Pi})+\nabla\cdot(\vec{\Pi}\cdot\vec{u})=\Pi_{ij}\frac{\partial u_i}{\partial x_j}.$$

Problem 3.

Use the 1-D model of the SOL developed in class to calculate the temperature at the divertor plates for Alcator C-Mod using the following assumptions and parameters:

Conduction limited regime (*nu* is neglible) Temperature equilibrated ($T_e = T_i \equiv T$) Length of divertor channel $\ell = 10 m$ Temperature channel input = 50 eV Power density at channel input = 500 MW/m².

Sketch T(x) where x is distance along the divertor channel from the input.