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8.575J , 10.44J, 22.52J Statistical Thermodynamics of Complex Liquids  
(Spring 2004)  Problem Set 1 (Prof. Chen)    Due March 18. 
 
1.  Given the following table for the scattering lengths of common elements: 
 
    Isotope Hydrogen Deuterium Carbon Nitrogen Oxygen 
bcoh (10-12 cm) -0.37423 0.6674 0.66484 0.936 0.5805 
 
estimate the molecular volume (from the molecular weight and density) and then calculate the scattering 
length densities of the following molecules, in unit of1010 cm-2: H2O, D2O, Octane, Deuterated  octane, 
and Pluronic P-84, a tri-block co-polymer, [(PEO)19 (PPO)43 (PEO)19], where PEO = -(CH2)2O-, having 
a molecular volume 72.4 Å3, and PPO = -(CH2)3O-, having a molecular volume 95.4 Å3 .  
 
2. Show that the form factor of a spherical particle with an internal core of radius R1 and a scattering 
length density (sld) ρ1, surrounded by a shell with an outer radius R2 and sld ρ2, immersed in a solvent 
of sld ρs, is given by: 
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Use this result to calculate and plot the normalized particle structure factor P (Q) of a co-polymer 
micelle having an inner core radius R1 and an outer radius R2. In a core-shell model of the micelle [Y.C. 
Liu et al, Phys. Rev. E 54, 1698 (1996)], the inner and outer radii can be determined from the 
aggregation (N) and hydration (H) numbers of the micelle. Plot the P (Q) for the case of N = 63 and H 
= 290. 
 
3. Show that the form factor of a randomly oriented prolate spheroid, with semi-major and minor axes 
of a and b, is given by: 
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where (∆ρ) is the contrast between the particle and the solvent, µ the cosine of the angle between the 
major axis of the spheroid and the Q-vector. 
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4. Derive a normalized particle structure factor P (Q)  of a uniform cylindrical particle of radius R and 
 length L. Assuming that the particle is randomly oriented with respect to the   

r 
Q  vector.   

(A) Show that: 
        1 
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 In Eq.3, V p  denotes the volume of the particle,  

v r  the position vector of an arbitrary point in the 

interior of the particle, and µ the cosine of the angle between the axis of the cylinder and the Q-
vector. The bracket means that we are considering an average over random orientations of the 
particle. 
(B) Show that for a long and thin cylinder, one has asymptotic formulae: 
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(C) Show that for a flat particle (a lamellar) of QR>>1, 
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where L is the thickness of the flat plate. 

 
(D) From Eq.4 and 5, one can conclude that for a long rod a ln[QI(Q)] vs Q2 plot, and for a flat disk, 
a ln[Q2I(Q)] vs Q2 plot, will result in a straight line at large Q with slopes proportional to R2 /4 and 
L2/12 respectively. Explore additional system parameters you can extract from the intercept at Q = 
0. 
(E) In polymer literature, another approximate formula is often used. It is the limit when R goes to 
zero, the so called "stiff thin rod" limit. Show that: 
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 Explore graphically the difference between approximations of the last equation and Eq. 3 
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5. (This problem is added for your interest only. Your answer is optional. In case you solve it, 

you will get a bonus points of 20/100)  
Scattering intensity of a Gaussian chain. Consider a flexible polymer chain of a contour length L 
=Na, where N is the no. of segments and a is the Kuhn length. If the chain makes a random walk in 
space, then the mean square end-to-end distance is R2 = Na2 . For this chain, the distribution of 
distances between two links (i,j) is Gaussian, namely, 

        2 
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 In order to calculate the normalized particle structure factor of such chain. (a) Start from the 
definition: 
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 so that we can evaluate the Gaussian average by integrating the exponential phase factor using the 
distribution function given by Eq.7. (b) Show first that : 
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(c) Prove a theorem: For an arbitrary function f(x), 

 f (| i − j | ) = Nf (0)
j =1

N

∑
i =1

N

∑ + 2 (N − n) f (n)
n=1

N −1

∑      (10) 

(d) Use the theorem to show that the sum in Eq.9 can be evaluated as: 
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where  α = exp( 1
6

Q2a2 ) ≈ 1 −
1
6

Q2a2 , because Qa is much smaller than unity in practice. 

(e) Show that in the limit N → ∞ , P (Q)  approach the Debye function 
 

 P (Q) =
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1
6
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1
6
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(f) Discuss the small and large Q behavior of Eq.12. In particular, show that: 
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