8.575J , 10.44J, 22.52J Statistical Thermodynamics of Complex Liquids (Spring 2004)

Problem Set 1 (Prof. Chen)
Due March 18.

1. Given the following table for the scattering lengths of common elements:

Isotope	Hydrogen	Deuterium	Carbon	Nitrogen	Oxygen
$\mathrm{b}_{\mathrm{coh}}\left(10^{-12} \mathrm{~cm}\right)$	-0.37423	0.6674	0.66484	0.936	0.5805

estimate the molecular volume (from the molecular weight and density) and then calculate the scattering length densities of the following molecules, in unit of $10^{10} \mathrm{~cm}^{-2}: \mathrm{H}_{2} \mathrm{O}, \mathrm{D}_{2} \mathrm{O}$, Octane, Deuterated octane, and Pluronic P-84, a tri-block co-polymer, $\left[(\mathrm{PEO})_{19}(\mathrm{PPO})_{43}(\mathrm{PEO})_{19}\right]$, where $\mathrm{PEO}=-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}$-, having a molecular volume $72.4 \AA^{3}$, and $\mathrm{PPO}=-\left(\mathrm{CH}_{2}\right)_{3} \mathrm{O}$-, having a molecular volume $95.4 \AA^{3}$.
2. Show that the form factor of a spherical particle with an internal core of radius R_{1} and a scattering length density (sld) ρ_{1}, surrounded by a shell with an outer radius R_{2} and sld ρ_{2}, immersed in a solvent of sld ρ_{s}, is given by:

$$
\mathrm{F}_{2 \text {-shell }}(\mathrm{Q})=\frac{4}{3} \pi \mathrm{R}_{1}^{3}\left(\rho_{1}-\rho_{2}\right)\left\lfloor\frac{3 \mathrm{j}_{1}\left(\mathrm{QR}_{1}\right)}{\mathrm{QR}_{1}}\right\rfloor+\frac{4}{3} \pi \mathrm{R}_{2}^{3}\left(\rho_{2}-\rho_{\mathrm{s}}\right)\left\lfloor\frac{3 \mathrm{j}_{1}\left(\mathrm{QR}_{2}\right)}{\mathrm{QR}_{2}}\right\rfloor
$$

Use this result to calculate and plot the normalized particle structure factor $\overline{\mathrm{P}}(\mathrm{Q})$ of a co-polymer micelle having an inner core radius R_{1} and an outer radius R_{2}. In a core-shell model of the micelle [Y.C. Liu et al, Phys. Rev. E 54, 1698 (1996)], the inner and outer radii can be determined from the aggregation (N) and hydration (H) numbers of the micelle. Plot the $\overline{\mathrm{P}}(\mathrm{Q})$ for the case of $\mathrm{N}=63$ and H $=290$.
3. Show that the form factor of a randomly oriented prolate spheroid, with semi-major and minor axes of a and b, is given by:

$$
\begin{align*}
& \mathrm{F}_{\text {ellipsoid }}(\mathrm{Q})=\frac{4 \pi}{3} \mathrm{ab}^{2}(\Delta \rho) \int_{0}^{1} \mathrm{~d} \mu\left\lfloor\frac{3 \mathrm{j}_{1}(\mathrm{u})}{\mathrm{u}}\right\rfloor \tag{2}\\
& \mathrm{u}=\mathrm{Q} \sqrt{\mathrm{a}^{2} \mu^{2}+\mathrm{b}^{2}\left(1-\mu^{2}\right)}
\end{align*}
$$

where ($\Delta \rho$) is the contrast between the particle and the solvent, μ the cosine of the angle between the major axis of the spheroid and the Q-vector.
4. Derive a normalized particle structure factor $\overline{\mathrm{P}}(\mathrm{Q})$ of a uniform cylindrical particle of radius R and length L. Assuming that the particle is randomly oriented with respect to the \dot{Q} vector.
(A) Show that:

$$
\overline{\mathrm{P}}(\mathrm{Q})=<\left|\frac{1}{\mathrm{~V}_{\mathrm{p}}} \int_{\mathrm{V}_{\mathrm{p}}} \mathrm{e}^{\mathrm{iQ} \cdot \mathrm{r}} \mathrm{~d}^{3} \mathrm{r}\right|^{2}>=\frac{1}{2} \int_{-1}^{1} \mathrm{~d} \mu\left[\frac{\sin \mathrm{QL} \mu / 2}{\mathrm{QL} \mu / 2}\right]^{2}\left[\frac{2 \mathrm{~J}_{1}\left(\mathrm{QR} \sqrt{1-\mu^{2}}\right)}{\mathrm{QR} \sqrt{1-\mu^{2}}}\right]^{2}
$$

In Eq.3, V_{p} denotes the volume of the particle, $\dot{\mathrm{r}}$ the position vector of an arbitrary point in the interior of the particle, and μ the cosine of the angle between the axis of the cylinder and the Qvector. The bracket means that we are considering an average over random orientations of the particle.
(B) Show that for a long and thin cylinder, one has asymptotic formulae:

$$
\begin{equation*}
\overline{\mathrm{P}}(\mathrm{Q}) \underset{\mathrm{QL}>2 \pi}{\rightarrow} \frac{\pi}{\mathrm{QL}}\left[\frac{2 \mathrm{~J}_{1}(\mathrm{QR})}{\mathrm{QR}}\right]_{\mathrm{QR} 4}^{\rightarrow} \frac{\pi}{\mathrm{QL}} \mathrm{e}^{-\frac{1}{4} \mathrm{Q}^{2} \mathrm{R}^{2}} \tag{4}
\end{equation*}
$$

(C) Show that for a flat particle (a lamellar) of $\mathrm{QR} \gg 1$,

$$
\begin{equation*}
\overline{\mathrm{P}}(\mathrm{Q}) \underset{\mathrm{QR}>1}{\rightarrow} \frac{2}{\mathrm{Q}^{2} \mathrm{R}^{2}}\left[\frac{\sin \mathrm{QL} / 2}{\mathrm{QL} / 2}\right]_{\mathrm{QL}<1} \rightarrow \frac{2}{\mathrm{Q}^{2} \mathrm{R}^{2}} \mathrm{e}^{-\frac{1}{12} \mathrm{Q}^{2} \mathrm{~L}^{2}} \tag{5}
\end{equation*}
$$

where L is the thickness of the flat plate.
(D) From Eq. 4 and 5, one can conclude that for a long rod a $\ln [Q I(Q)]$ vs Q^{2} plot, and for a flat disk, a $\ln \left[\mathrm{Q}^{2} \mathrm{I}(\mathrm{Q})\right]$ vs Q^{2} plot, will result in a straight line at large Q with slopes proportional to $\mathrm{R}^{2} / 4$ and $\mathrm{L}^{2} / 12$ respectively. Explore additional system parameters you can extract from the intercept at $\mathrm{Q}=$ 0.
(E) In polymer literature, another approximate formula is often used. It is the limit when R goes to zero, the so called "stiff thin rod" limit. Show that:

$$
\begin{equation*}
\overline{\mathrm{P}}(\mathrm{Q})_{\mathrm{R} \rightarrow 0}^{=} \int_{0}^{1} \mathrm{~d} \mu\left[\frac{\sin \mathrm{QL} \mu / 2}{\mathrm{QL} \mu / 2}\right]^{2}=\int_{0}^{1} \mathrm{~d} \mu\left[\frac{\sin \mathrm{x} \mu}{\mathrm{x} \mu}\right]^{2}=\frac{1}{\mathrm{x}} \int_{0}^{2 \mathrm{x}} \frac{\sin \mathrm{u}}{\mathrm{u}} \mathrm{du}-\left(\frac{\sin \mathrm{x}}{\mathrm{x}}\right)^{2} . \tag{6}
\end{equation*}
$$

Explore graphically the difference between approximations of the last equation and Eq. 3

5. (This problem is added for your interest only. Your answer is optional. In case you solve it, you will get a bonus points of $\mathbf{2 0} \mathbf{1 0 0}$)

Scattering intensity of a Gaussian chain. Consider a flexible polymer chain of a contour length L $=\mathrm{Na}$, where N is the no. of segments and a is the Kuhn length. If the chain makes a random walk in space, then the mean square end-to-end distance is $R^{2}=N a^{2}$. For this chain, the distribution of distances between two links (i, j) is Gaussian, namely,

$$
\begin{equation*}
P\left(R_{i j}\right) d R_{i j}=\left[\frac{3}{2 \pi\left\langle R_{i j}^{2}\right\rangle}\right]^{3 / 2} 4 \pi R_{i j}^{2} \exp \left[\frac{-3 R_{i j}^{2}}{2\left\langle R_{i j}^{2}\right\rangle}\right] d R_{i j} \text {, where }\left\langle R_{i j}^{2}\right\rangle=|i-j| a^{2} \text {. } \tag{7}
\end{equation*}
$$

In order to calculate the normalized particle structure factor of such chain. (a) Start from the definition:

$$
\begin{equation*}
\bar{P}(Q)=\frac{1}{N^{2}}\left\langle\sum_{i=1}^{N} \sum_{j=1}^{N} e^{i Q \cdot\left(R_{i}-R_{j}\right)}\right\rangle=\frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N}\left\langle e^{\left.i Q \cdot R_{i j}{ }^{r}\right\rangle_{\text {gaussian }}}\right. \tag{8}
\end{equation*}
$$

so that we can evaluate the Gaussian average by integrating the exponential phase factor using the distribution function given by Eq.7. (b) Show first that :

$$
\begin{equation*}
\bar{P}(Q)=\frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} \exp \left[-\frac{1}{6}\left\langle R_{i j}^{2}\right\rangle\right]=\frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} \exp \left[-\frac{1}{6} Q^{2} a^{2}|i-j|\right. \tag{9}
\end{equation*}
$$

(c) Prove a theorem: For an arbitrary function $f(x)$,

$$
\begin{equation*}
\sum_{i=1}^{N} \sum_{j=1}^{N} f(|i-j|)=N f(0)+2 \sum_{n=1}^{N-1}(N-n) f(n) \tag{10}
\end{equation*}
$$

(d) Use the theorem to show that the sum in Eq. 9 can be evaluated as:

$$
\begin{equation*}
\bar{P}(Q)=\frac{1}{N^{2}}\left[N+2 \frac{(N-1) \alpha-N \alpha^{2}+\alpha^{N+1}}{(1-\alpha)^{2}}\right] \tag{11}
\end{equation*}
$$

where $\alpha=\exp \left(\frac{1}{6} Q^{2} a^{2}\right) \approx 1-\frac{1}{6} Q^{2} a^{2}$, because Qa is much smaller than unity in practice. (e) Show that in the limit $N \rightarrow \infty, \bar{P}(Q)$ approach the Debye function

$$
\begin{equation*}
\bar{P}(Q)=\frac{2}{x^{2}}\left(x-1+e^{-x}\right), \text { where } x=\frac{1}{6} Q^{2} R^{2}=\frac{1}{6} Q^{2} a^{2} N \tag{12}
\end{equation*}
$$

(f) Discuss the small and large Q behavior of Eq.12. In particular, show that:
$\lim _{x \rightarrow \infty} \frac{1}{P(Q)}=\frac{1}{2}+\frac{1}{12} Q^{2} R^{2}$

