Quantization of the electromagnetic field

The classical electromagnetic field

Maxwell Equations

Gauss's law Gauss's law for magnetism Maxwell-Faraday equation (Faraday's law of induction) Ampere's circuital law (with Maxwell's correction) $\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$ $\nabla \cdot \mathbf{B} = 0$ $\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

Maxwell Equations

• In empty space $(c = 1/\sqrt{\mu_0 \varepsilon_0})$

Gauss's law $\nabla \cdot \mathbf{E} = 0$ Gauss's law for magnetism $\nabla \cdot \mathbf{B} = 0$ Maxwell-Faraday equation $\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$ Ampere's circuital law $\nabla \times \mathbf{B} = \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}$

Wave Equations

$$\nabla^2 E - \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2} = 0$$

$$\nabla^2 B - \frac{1}{c^2} \frac{\partial^2 B}{\partial t^2} = 0$$

Derivation of wave equations

• Curl of Maxwell Faraday equation

$$\nabla \times (\nabla \times \mathbf{E}) = -\frac{1}{c} \frac{\partial \nabla \times \mathbf{B}}{\partial t}$$

• Use Ampere's Law and vector identity $\nabla \times (\nabla \times \vec{v}) = \nabla (\nabla \cdot \vec{v}) - \nabla^2 \vec{v}$

$$\nabla(\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E} = -\frac{1}{c} \frac{\partial}{\partial t} \left(\frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} \right)$$

Derivation of wave equations

• Use Gauss Law

$$\nabla (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E} = -\frac{1}{c} \frac{\partial}{\partial t} \left(\frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} \right)$$

$$-\nabla^2 \mathbf{E} = -\frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t}$$

Wave equation

$$\nabla^2 E \quad \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2} = 0$$

• Eigenvalue equation from separation of variables: $\mathbf{E}(\vec{x},t) = \sum_{m} f_m(t) \vec{u}_m(\vec{x})$

$$\nabla^2 u_m = -k_m^2 u_m$$

$$\frac{d^2 f_m}{dt^2} + c^2 k_m^2 f_m(t) = 0$$

Normal modes

- $\{u_m\}$ are eigenfunctions of the wave equation
- Boundary conditions (from Maxwell eqs.)

$$\nabla \cdot u_m = 0, \quad \vec{n} \times u_m = 0$$

Orthonormality condition

$$\int \vec{u}_m(x)\vec{u}_n(x)d^3x = \delta_{n,m}$$

• They form a basis.

B-field

• Electric field in $\{u_m\}$ basis:

$$\mathbf{E}(\vec{x},t) = \sum_{m} f_m(t) \vec{u}_m(\vec{x})$$

• Magnetic field in $\{u_m\}$ basis

$$\mathbf{B}(x,t) = \sum_{m} h_m(t) \left(\nabla \times u_m(x)\right)$$

B-field solution

- What are the coefficients h_n ?
 - We still need to satisfy Maxwell equations:

$$\nabla \times E = -\frac{1}{c}\partial_t B \quad \rightarrow$$

$$\sum_{n} f_n(t) \nabla \times u_n = -\frac{1}{c} \sum_{n} \partial_t h_n(t) \nabla \times u_n$$

• Solution:
$$\frac{d h_n}{d t} = -c f_n$$

Eigenvalues of h_n

• Find equation for h_n only: Ampere's law $\nabla \times B = \frac{1}{c} \frac{\partial E}{\partial t}$

$$\sum_{n} h_n(t) \nabla \times (\nabla \times u_n) = \frac{1}{c} \sum_{n} \frac{df_n}{dt} u_n$$

$$\rightarrow -\sum_{n} h_n \nabla^2 u_n = \frac{1}{c} \sum_{n} \frac{d f_n}{d t} u_n$$

Eigen-equations

• Eigenvalue equation for h_n

$$\frac{d^2}{dt^2}h_n(t) + c^2k_n^2h_n(t) = 0$$

• Eigenvalue equation for f_n

$$\frac{d^2 f_n}{dt^2} + c^2 k_n^2 f_n(t) = 0$$

E.M. field Hamiltonian

• Total energy:

$$\mathcal{H} \propto \frac{1}{2} \int (E^2 + B^2) d^3 x$$

Substituting, integrating and using orthonormality conditions:

$$\mathcal{H} = \frac{1}{8\pi} \sum_{n,m} \left(f_n f_m \int u_n(x) u_m(x) d^3 x + h_n h_m \int (\nabla \times u_n) \cdot (\nabla \times u_m) d^3 x \right)$$

$$\mathcal{H} = \sum_{n} \frac{1}{8\pi} (f_n^2 + k_n^2 h_n^2)$$

E.M. field as H.O.

 Hamiltonian looks very similar to a sum of harmonic oscillators:

$$\mathcal{H}_{h.o.} = \frac{1}{2} \sum_{n} (p_n^2 + \omega_n^2 q_n^2) \iff \mathcal{H}_{e.m.} = \frac{1}{2} \sum_{n} \frac{1}{4\pi} (f_n^2 + k_n^2 h_n^2)$$

• h_n is derivative of f_n \Rightarrow identify with momentum

Quantized electromagnetic field

Operators

- We associate quantum operators to the coefficients f_n , $f_n \rightarrow \hat{f}_n$
- We write this operator in terms of annihilation and creation operators

$$\hat{f}_n = \sqrt{2\pi\omega_n\hbar}(a_n^{\dagger} + a_n)$$

that create or destroy one mode of the e.m. field

Operator fields

• Electric field

$$\mathbf{E}(x,t) = \sum_{n} \sqrt{2\hbar\pi\omega_n} [a_n^{\dagger}(t) + a_n(t)] \mathbf{u}_n(x)$$

• Magnetic field

$$\mathbf{B}(x,t) = \sum_{n} ic_n \sqrt{\frac{2\pi\hbar}{\omega_n}} [a_n^{\dagger} - a_n] \nabla \times \mathbf{u}_n(x)$$

Hamiltonian

• The Hamiltonian is then simply expressed in terms of the *a_n* operators

$$\mathcal{H} = \sum_{n} \omega_n \left(a_n^{\dagger} a_n + \frac{1}{2} \right)$$

• The frequencies are

$$\omega_n(k) = c |\vec{k}_n|$$

Gauges

Lorentz (scalar potential $\varphi = 0$) Coulomb (vector potential $\nabla \cdot \vec{A} = 0$)

Zero-Point Energy

Field in cavity

• Field in a cavity of volume $V = L_x L_y L_z$

Given the boundary conditions, the normal modes are:

 $u_{n,\alpha} = A_{\alpha} \cos(k_{n,x} r_x) \sin(k_{n,y} r_y) \sin(k_{n,z} r_z)$

• with
$$k_{n,\alpha} = \frac{n_{\alpha}\pi}{L_{\alpha}}, \quad n_{\alpha} \in \mathcal{N}$$

Polarization

• Because of the boundary condition,

 $\nabla \cdot \vec{u}_n = 0$

• the coefficients A must satisfy:

$$A_x k_{n,x} + A_y k_{n,y} + A_z k_{n,z} = 0$$

• For each set $\{n_x, n_y, n_z\}$ there are 2 solutions

Two polarizations per each mode

Electric field in cavity

• The electric field has a simple form

$$E(x,t) = \sum_{\alpha=1,2} (\mathcal{E}_{\alpha} + \mathcal{E}_{\alpha}^{\dagger})$$

• with
$$\mathcal{E}_{\alpha}^{\dagger} = \hat{e}_{\alpha} \sum_{n} \mathcal{E}_{n} a_{n}^{\dagger} e^{i(\vec{k}_{n} \cdot \vec{r} - \omega t)}$$

• and
$$\mathcal{E}_n = \sqrt{\frac{\hbar\omega_n}{2\epsilon_0 V}}$$

the field of one photon

of frequency ω_n

Energy density

$$E = \langle \mathcal{H} \rangle = 2 \sum_{k=1}^{k_c} \hbar \omega_k \left\langle a_k^{\dagger} a_k + \frac{1}{2} \right\rangle$$

• The Zero-point energy density is then

$$E_0 = \frac{2}{V} \sum_{k=1}^{k_c} \frac{1}{2} \hbar \omega_k$$

Energy density

• If cavity is large, wavevector is almost continuous

Zero-point energy

Integrating over the positive octant

$$E_0 = \frac{2}{V} \frac{2V}{\pi^3} \frac{4\pi}{8} \int_{k=0}^{k_c} dk \frac{1}{2} \hbar k^3 c$$

• setting a cutoff k_c,we have

$$E_0 = \frac{c\hbar}{2\pi^2} \int_{k=0}^{k_c} dkk^3 = \frac{\hbar ck_c^4}{8\pi^2}$$

Zero-point energy

• It's huge!

Cutoff at visible frequency $\lambda_c = 2\pi/k = 0.4 \times 10^{-6} m$

Image by MIT OpenCourseWare.

 $2.7 \times 10^{-8} \text{J/m}^3 \otimes 1 \text{m}$

 23 J/m^3

But is it ever seen?

Casimir Effect

 Dutch theoretical physicist Hendrik Casimir (1909–2000) first predicted in 1948 that when two mirrors face each other in vacuum, fluctuations in the vacuum exert "radiation pressure" on them

Casimir Effect

 Cavity bounded by conductive walls

Add a conductive plate
 @ distance R

• Change in energy is:

$$\Delta W = (W_R + W_{L-R}) - W_L$$

Casimir effect

- Each term is calculated from zero-point energy
- Continuous approximation is not valid if R is small
- $\bullet\,$ Thus the difference ΔW is not zero

$$\Delta W = -\hbar c \frac{\pi^2}{720} \frac{L^2}{R^3}$$

Casimir Force

• The difference in energy corresponds to an attractive force

$$F = -\frac{\partial \Delta W}{\partial R} = -\hbar c \frac{\pi^2}{240} \frac{L^2}{R^4}$$

• or a pressure

$$P = -\frac{\pi^2}{240} \frac{\hbar c}{R^4}$$

Casimir in MEMS

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Quantum Mechanical Actuation of Microelectromechanical Systems by the Casimir Force

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop and Federico Capasso

Science 9 March 2001: Vol. 291 no. 5510 pp. 1941-1944

MIT OpenCourseWare http://ocw.mit.edu

22.51 Quantum Theory of Radiation Interactions Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.