
Quantization of the 

electromagnetic field
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The classical electromagnetic field
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Maxwell Equations
 

Gauss’s law r · E = ⇢ 
" 0 

Gauss’s law for magnetism r · B = 0  

Maxwell-Faraday equation r⇥  E = _ 1 
c 
@B 
@t 

(Faraday’s law of induction) 

Ampere’s circuital law r⇥  B = µ0J + µ0 " 0 
@E 
@t 

(with Maxwell’s correction) 
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Maxwell Equations 
p• In empty space (c = 1/ µ0 " 0) 

Gauss’s law r · E = 0  

Gauss’s law for magnetism r · B = 0  

Maxwell-Faraday equation r⇥  E = _ 1 
c 
@
@
B 
t 

Ampere’s circuital law r⇥  B = 1 @E 
c @t 
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Wave Equations
 

1 @2E r2E � = 0 
  
c2 @t2 

1 @2B r2B � = 0 
  
c2 @t2 
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Derivation of wave equations
 

• Curl of Maxwell Faraday equation 

1 @r⇥  B r⇥  (r⇥  E) =  _ 
c @t 

• Use Ampere’s Law 
and vector identity 
r⇥  (r⇥ 
~v
) =  r(r ·
~v
) -r2
 ~v
 

1 @ 
✓ 
1 @E 

◆ 

r(r · E) r2E =  
c @t c @t 
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Derivation of wave equations
 

• Use Gauss Law 

1 @ 
✓ 
1 @E 

◆ 

r(⇠⇠⇠r · E) r2E =  
c @t c @t 

• Obtain wave equation 

1 @2E �r2E = � 
c2 @t 
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�

Wave equation
 
1 @2E r2E = 0 
  
c2 @t2 

• Eigenvalue equation from separation of 


t) =
X 

,x
~
 ~
~
E( (t)um(x) 
m 

d2fm2 2k2 r um = �k2 um + c fm(t) = 0 
m mdt2 

variables:
 fm
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Normal modes
 

• {um}        are eigenfunctions of the wave equation
 

• Boundary conditions (from Maxwell eqs.) 

r · um = 0, ~ ⇥n um = 0  

• Orthonormality condition 
Z 

~um(x)~un(x)d
3 
x = 6n,m 

• They form a basis. 
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B-field 

• Electric field in {um} basis:
 

)~x
(t)um( 
m 

~


• Magnetic field in {um} basis 

B(x, t) =  
X 

hm(t) (r⇥  um(x)) 
m 

t) =
X 

, E(x
~
 fm
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B-field solution
 

• What are the coefficients hn? 

• We still need to satisfy Maxwell equations: 

1 r⇥  E = � @tB ! 
c 

1X 
fn(t)r⇥  un = � 

X 
@thn(t)r⇥  un
 

c 
n n 

• Solution: d hn = -cfn
d t  
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Eigenvalues of hn
 

• Find equation for hn only:Ampere’s law
 

1 @E r⇥  B = 
c @t 

1 d fnX 
hn(t)r⇥  (r⇥  un) =  

X 
un 

c d t  
n n 

2 1 d fn! � 
X 

hnr un = 
X 

un
 
c d t  

n n 
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Eigen-equations 

• Eigenvalue equation for hn 

d2 
2k2hn(t) +  c hn(t) = 0  ndt2 

• Eigenvalue equation for fn 

d2fn + c (t) = 0
dt2 

2 2k fnn
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E.M. field Hamiltonian
 

• Total energy: 

1 
Z 

H / (E2 + B2)d3 
x 

2 

• Substituting, integrating and using 
orthonormality conditions: 

1 
✓ Z Z ◆ 

H = 
X 

fnfm un(x)um(x)d3 
x + hnhm (r⇥  un) · (r⇥  um)d3 

x 
8⇡ 

n,m 

1 H = 
X 

(f2 + k2 h2 )n n n
8⇡ 
n 14



 
                 

E.M. field as H.O.
 

• Hamiltonian looks very similar to a sum of 
harmonic oscillators: 

1
 X

(p
2n
+ !
2n
q
 2n
) ,
 He.m.
 =
 

1
 X
 1
 
2 4⇡
 

(f
2n
+ k 
H
h.o. =
 h
 )


2
 
n
n
 

• hn is derivative of fn 
⇒ identify with momentum 

2
n


2
n


15



Quantized electromagnetic field
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Operators 
• We associate quantum operators to the 

coefficients fn, fn ! f̂  
n 

• We write this operator in terms of 
annihilation and creation operators 

†f̂  
n = 

p
2⇡!n ~(a + an)n 

that create or destroy one mode of the e.m. field
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Operator fields 

• Electric field 

†E(x, t) =  
Xp

2~⇡!n[a (t) +  an(t)]un(x)n
n 

• Magnetic field 
r 

2⇡~
 †B(x, t) =  
X 

icn [a � an]r⇥  un(x)n
!n n 
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Hamiltonian
 

• The Hamiltonian is then simply expressed 
in terms of the an operators 

✓ 
† 1 

◆ 

H = 
X 

!n a an +n 2 
n 

• The frequencies are 

!n(k) =  c|~kn| 
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Gauges
 

Lorentz (scalar potential  ' = 0  )
 
~Coulomb (vector potential  r · A=0)
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Zero-Point Energy
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Field in cavity
 

• Field in a cavity of volume V = L
x

L
y

L
z
 

• Given the boundary 
conditions, 
the normal modes are: 
u
n,↵ = A

↵ cos(kn,xrx) sin(kn,yry) sin(kn,zrz ) 

n↵⇡• with kn,↵ = , n↵ 2 N 
L↵ 
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Polarization 

• Because of the boundary condition, 

r · ~un = 0  

• the coefficients A must satisfy: 
A

x

k
n,x + A

y

k
n,y + A

z

k
n,z = 0  

• For each set  {n
x

, n
y

, n
z } there are 2 solutions
 

Two polarizations per each mode 
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Electric field in cavity
 

• The electric field has a simple form 

E(x, t) =  
X 

(E↵ + E↵† ) 
↵=1,2 

E† 
X 

† i(~kn ·r~�!t)• with ↵ = ê↵ Enane 
n 

r

• and En = 
~!n the field of one photon

2✏0V 

of frequency   !n 
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Energy density 
kc ⌧ 

1 
�

†E = hHi = 2  
X 

~!k akak + 
2 

k=1 

• The Zero-point energy density is then
 

kc2 1 
E0 = 

X 
~!k


V 2 
k=1 
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Energy density 

• If cavity is large, wavevector is almost 
continuous 

X 1 
8 

Z 
d3k⇢(k) 

k>0 
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Zero-point energy
 

• Integrating over the positive octant
 
Z kc2 2V 4⇡ 1 

E0 = dk ~k3 c 
V ⇡3 8 k=0 2 

• setting a cutoff kc,we have 

Z kcc~ ~ck4 
cE0 = dkk3 = 

2⇡2 
k=0 8⇡2 
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Zero-point energy
 
• It’s huge! 

Cutoff at visible frequency
 

Ac = 2⇡/k = 0.4 ⇥ 10-6 m
 

3
3
2.7 ⇥ 10 8J/m @ 1m 23 J/m
 

• But is it ever seen?
 

Image by MIT OpenCourseWare.
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Casimir Effect 
• Dutch theoretical physicist Hendrik Casimir 

(1909–2000) first predicted in 1948 that when 
two mirrors face each other in vacuum, 
fluctuations in the vacuum exert “radiation 
pressure” on them 
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Casimir Effect
 

• Cavity bounded by L
 
conductive walls
 

WL
 

• Add a conductive plate 
@ distance R 

• Change in energy is: 

�W = (WR + WL�R) � WL 

R 

WL-RWR 
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Casimir effect
 

• Each term is calculated from zero-point 
energy 

• Continuous approximation is not valid if R 
is small 

• Thus the difference ∆W is not zero 

⇡2 L2 

�W = �~c 
720 R3 
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Casimir Force
 

• The difference in energy corresponds to an 
attractive force 

@�W ⇡2 L2 

F = � = �~c 
@R 240 R4 

• or a pressure 
⇡2 ~c
 

P = � 
240 R4
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Casimir in MEMS
 

Quantum Mechanical Actuation of Microelectromechanical Systems by the Casimir Force
H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop and Federico Capasso 
Science 9 March 2001: Vol. 291 no. 5510 pp. 1941-1944 

© Source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.
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