Quantization of the electromagnetic field

The classical electromagnetic field

Maxwell Equations

Gauss's law
Gauss's law for magnetism
Maxwell-Faraday equation
(Faraday's law of induction)
Ampere's circuital law (with Maxwell's correction)
$\nabla \cdot \mathbf{E}=\frac{\rho}{\varepsilon_{0}}$
$\nabla \cdot \mathbf{B}=0$
$\nabla \times \mathbf{E}=-\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$
$\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\mu_{0} \varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}$

Maxwell Equations

- In empty space $\quad\left(c=1 / \sqrt{\mu_{0} \varepsilon_{0}}\right)$

Gauss's law
Gauss's law for magnetism
Maxwell-Faraday equation
Ampere's circuital law
$\nabla \cdot \mathbf{E}=0$
$\nabla \cdot \mathbf{B}=0$
$\nabla \times \mathbf{E}=-\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$
$\nabla \times \mathbf{B}=\frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}$

Wave Equations

$$
\begin{aligned}
& \nabla^{2} E-\frac{1}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}}=0 \\
& \nabla^{2} B-\frac{1}{c^{2}} \frac{\partial^{2} B}{\partial t^{2}}=0
\end{aligned}
$$

Derivation of wave equations

- Curl of Maxwell Faraday equation

$$
\nabla \times(\nabla \times \mathbf{E})=-\frac{1}{c} \frac{\partial \nabla \times \mathbf{B}}{\partial t}
$$

- Use Ampere's Law and vector identity $\nabla \times(\nabla \times \vec{v})=\nabla(\nabla \cdot \vec{v})-\nabla^{2} \vec{v}$

$$
\nabla(\nabla \cdot \mathbf{E})-\nabla^{2} \mathbf{E}=-\frac{1}{c} \frac{\partial}{\partial t}\left(\frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}\right)
$$

Derivation of wave equations

- Use Gauss Law

$$
\nabla(\nabla \cdot \mathbf{E})-\nabla^{2} \mathbf{E}=-\frac{1}{c} \frac{\partial}{\partial t}\left(\frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}\right)
$$

- Obtain wave equation

$$
-\nabla^{2} \mathbf{E}=-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t}
$$

Wave equation

$$
\nabla^{2} E \quad \frac{1}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}}=0
$$

- Eigenvalue equation from separation of variables: $\mathbf{E}(\vec{x}, t)=\sum_{m} f_{m}(t) \vec{u}_{m}(\vec{x})$

$$
\nabla^{2} u_{m}=-k_{m}^{2} u_{m}
$$

$$
\frac{d^{2} f_{m}}{d t^{2}}+c^{2} k_{m}^{2} f_{m}(t)=0
$$

Normal modes

- $\left\{u_{m}\right\}$ are eigenfunctions of the wave equation
- Boundary conditions (from Maxwell eqs.)

$$
\nabla \cdot u_{m}=0, \quad \vec{n} \times u_{m}=0
$$

- Orthonormality condition

$$
\int \vec{u}_{m}(x) \vec{u}_{n}(x) d^{3} x=\delta_{n, m}
$$

- They form a basis.

B-field

- Electric field in $\left\{u_{m}\right\}$ basis:

$$
\mathbf{E}(\vec{x}, t)=\sum_{m} f_{m}(t) \vec{u}_{m}(\vec{x})
$$

- Magnetic field in $\left\{u_{m}\right\}$ basis

$$
\mathbf{B}(x, t)=\sum_{m} h_{m}(t)\left(\nabla \times u_{m}(x)\right)
$$

B-field solution

- What are the coefficients h_{n} ?
- We still need to satisfy Maxwell equations:

$$
\begin{aligned}
\nabla \times E & =-\frac{1}{c} \partial_{t} B \rightarrow \\
\sum_{n} f_{n}(t) \nabla \times u_{n} & =-\frac{1}{c} \sum_{n} \partial_{t} h_{n}(t) \nabla \times u_{n}
\end{aligned}
$$

- Solution: $\frac{d h_{n}}{d t}=-c f_{n}$

Eigenvalues of h_{n}

Find equation for h_{n} only:Ampere's law

$$
\begin{gathered}
\nabla \times B=\frac{1}{c} \frac{\partial E}{\partial t} \\
\sum_{n} h_{n}(t) \nabla \times\left(\nabla \times u_{n}\right)=\frac{1}{c} \sum_{n} \frac{d f_{n}}{d t} u_{n} \\
\rightarrow \quad-\sum_{n} h_{n} \nabla^{2} u_{n}=\frac{1}{c} \sum_{n} \frac{d f_{n}}{d t} u_{n}
\end{gathered}
$$

Eigen-equations

- Eigenvalue equation for h_{n}

$$
\frac{d^{2}}{d t^{2}} h_{n}(t)+c^{2} k_{n}^{2} h_{n}(t)=0
$$

- Eigenvalue equation for f_{n}

$$
\frac{d^{2} f_{n}}{d t^{2}}+c^{2} k_{n}^{2} f_{n}(t)=0
$$

E.M. field Hamiltonian

- Total energy:

$$
\mathcal{H} \propto \frac{1}{2} \int\left(E^{2}+B^{2}\right) d^{3} x
$$

- Substituting, integrating and using orthonormality conditions:

$$
\begin{gathered}
\mathcal{H}=\frac{1}{8 \pi} \sum_{n, m}\left(f_{n} f_{m} \int u_{n}(x) u_{m}(x) d^{3} x+h_{n} h_{m} \int\left(\nabla \times u_{n}\right) \cdot\left(\nabla \times u_{m}\right) d^{3} x\right) \\
\mathcal{H}=\sum_{n} \frac{1}{8 \pi}\left(f_{n}^{2}+k_{n}^{2} h_{n}^{2}\right)
\end{gathered}
$$

E.M. field as H.O.

- Hamiltonian looks very similar to a sum of harmonic oscillators:

$$
\mathcal{H}_{\text {h.o. }}=\frac{1}{2} \sum_{\mathrm{n}}\left(\mathrm{p}_{\mathrm{n}}^{2}+\omega_{\mathrm{n}}^{2} \mathrm{q}_{\mathrm{n}}^{2}\right) \Leftrightarrow \mathcal{H}_{\mathrm{e} . \mathrm{m} .}=\frac{1}{2} \sum_{\mathrm{n}} \frac{1}{4 \pi}\left(\mathrm{f}_{\mathrm{n}}^{2}+\mathrm{k}_{\mathrm{n}}^{2} \mathrm{~h}_{\mathrm{n}}^{2}\right)
$$

- h_{n} is derivative of f_{n}
\Rightarrow identify with momentum

Quantized electromagnetic field

Operators

- We associate quantum operators to the coefficients $f_{n}, \quad f_{n} \rightarrow \hat{f}_{n}$
- We write this operator in terms of annihilation and creation operators

$$
\hat{f}_{n}=\sqrt{2 \pi \omega_{n} \hbar}\left(a_{n}^{\dagger}+a_{n}\right)
$$

that create or destroy one mode of the e.m. field

Operator fields

- Electric field

$$
\mathbf{E}(x, t)=\sum_{n} \sqrt{2 \hbar \pi \omega_{n}}\left[a_{n}^{\dagger}(t)+a_{n}(t)\right] \mathbf{u}_{n}(x)
$$

- Magnetic field

$$
\mathbf{B}(x, t)=\sum_{n} i c_{n} \sqrt{\frac{2 \pi \hbar}{\omega_{n}}}\left[a_{n}^{\dagger}-a_{n}\right] \nabla \times \mathbf{u}_{n}(x)
$$

Hamiltonian

- The Hamiltonian is then simply expressed in terms of the a_{n} operators

$$
\mathcal{H}=\sum_{n} \omega_{n}\left(a_{n}^{\dagger} a_{n}+\frac{1}{2}\right)
$$

- The frequencies are

$$
\omega_{n}(k)=c\left|\vec{k}_{n}\right|
$$

Gauges

Lorentz (scalar potential $\varphi=0$) Coulomb (vector potential $\nabla \cdot \vec{A}=0$)

Zero-Point Energy

Field in cavity

- Field in a cavity of volume $V=L_{x} L_{y} L_{z}$
- Given the boundary conditions, the normal modes are:

$$
u_{n, \alpha}=A_{\alpha} \cos \left(k_{n, x} r_{x}\right) \sin \left(k_{n, y} r_{y}\right) \sin \left(k_{n, z} r_{z}\right)
$$

- with $k_{n, \alpha}=\frac{n_{\alpha} \pi}{L_{\alpha}}, \quad n_{\alpha} \in \mathcal{N}$

Polarization

- Because of the boundary condition,

$$
\nabla \cdot \vec{u}_{n}=0
$$

- the coefficients A must satisfy:

$$
A_{x} k_{n, x}+A_{y} k_{n, y}+A_{z} k_{n, z}=0
$$

- For each set $\left\{n_{x}, n_{y}, n_{z}\right\}$ there are 2 solutions

Two polarizations per each mode

Electric field in cavity

- The electric field has a simple form

$$
E(x, t)=\sum_{\alpha=1,2}\left(\mathcal{E}_{\alpha}+\mathcal{E}_{\alpha}^{\dagger}\right)
$$

- with $\mathcal{E}_{\alpha}^{\dagger}=\hat{e}_{\alpha} \sum_{n} \mathcal{E}_{n} a_{n}^{\dagger} e^{i\left(\vec{k}_{n} \cdot \vec{r}-\omega t\right)}$
- and $\mathcal{E}_{n}=\sqrt{\frac{\hbar \omega_{n}}{2 \epsilon_{0} V}}$ the field of one photon of frequency ω_{n}

Energy density

$$
E=\langle\mathcal{H}\rangle=2 \sum_{k=1}^{k_{c}} \hbar \omega_{k}\left\langle a_{k}^{\dagger} a_{k}+\frac{1}{2}\right\rangle
$$

- The Zero-point energy density is then

$$
E_{0}=\frac{2}{V} \sum_{k=1}^{k_{c}} \frac{1}{2} \hbar \omega_{k}
$$

Energy density

- If cavity is large, wavevector is almost continuous

$$
\frac{1}{8} \int d^{3} k \rho(k)
$$

Zero-point energy

- Integrating over the positive octant

$$
E_{0}=\frac{2}{V} \frac{2 V}{\pi^{3}} \frac{4 \pi}{8} \int_{k=0}^{k_{c}} d k \frac{1}{2} \hbar k^{3} c
$$

- setting a cutoff k_{c}, we have

$$
E_{0}=\frac{c \hbar}{2 \pi^{2}} \int_{k=0}^{k_{c}} d k k^{3}=\frac{\hbar c k_{c}^{4}}{8 \pi^{2}}
$$

Zero-point energy

- It's huge!

Cutoff at visible frequency
 $$
\lambda_{c}=2 \pi / k=0.4 \times 10^{-6} m
$$

Image by MIT OpenCourseWare.

$$
2.7 \times 10^{-8} \mathrm{~J} / \mathrm{m}^{3} @ 1 \mathrm{~m} \quad 23 \mathrm{~J} / \mathrm{m}^{3}
$$

- But is it ever seen?

Casimir Effect

- Dutch theoretical physicist Hendrik Casimir (1909-2000) first predicted in 1948 that when two mirrors face each other in vacuum, fluctuations in the vacuum exert "radiation pressure" on them

Casimir Effect

- Cavity bounded by conductive walls
- Add a conductive plate @ distance R

- Change in energy is:

$$
\Delta W=\left(W_{R}+W_{L-R}\right)-W_{L}
$$

Casimir effect

- Each term is calculated from zero-point energy
- Continuous approximation is not valid if R is small
- Thus the difference $\Delta \mathrm{W}$ is not zero

$$
\Delta W=-\hbar c \frac{\pi^{2}}{720} \frac{L^{2}}{R^{3}}
$$

Casimir Force

- The difference in energy corresponds to an attractive force

$$
F=-\frac{\partial \Delta W}{\partial R}=-\hbar c \frac{\pi^{2}}{240} \frac{L^{2}}{R^{4}}
$$

- or a pressure

$$
P=-\frac{\pi^{2}}{240} \frac{\hbar c}{R^{4}}
$$

Casimir in MEMS

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Quantum Mechanical Actuation of Microelectromechanical Systems by the Casimir Force

MIT OpenCourseWare
http://ocw.mit.edu

22.51 Quantum Theory of Radiation Interactions

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

