Neutron Scattering

Cross Section in 7 easy steps

I. Scattering Probability (TDPT)
2. Adiabatic Switching of Potential
3. Scattering matrix (integral over time)
4. Transition matrix (correlation of events)
5. Density of states
6. Incoming flux
7. Thermal average

I. Scattering Probability

- Probability of final scattered state, when evolving under scattering interaction

$$
\left.P_{\text {scatt }}=\left|\langle f| U_{I}(t)\right| i\right\rangle\left.\right|^{2}
$$

- Time-dependent perturbation theory (Dyson expansion)

2.Adiabatic Switching

- Slow switching of potential \rightarrow time $\in[-\infty, \infty]$

Particle

- V is approximately constant

3. Scattering Matrix

- Propagator for time $\mathrm{t}=-\infty \rightarrow \mathrm{t}=\infty$ is called the scattering matrix

$$
\left.\left.\left|\langle f| U_{I}\left(t_{i}=-\infty, t_{f}=\infty\right)\right| i\right\rangle\left.\right|^{2}=|\langle f| S| i\right\rangle\left.\right|^{2}
$$

- S is expanded in series:

$$
\begin{aligned}
\langle f| S^{(1)}|i\rangle & =-i V_{f i} \int_{-\infty}^{\infty} e^{i \omega_{f i} t} d t=-2 \pi i \delta\left(\omega_{f}-\omega_{i}\right) V_{f i} \\
\langle f| S^{(2)}|i\rangle & =-\langle f|\left(\sum_{m} V|m\rangle\langle m| V\right)|i\rangle \int_{-\infty}^{\infty} d t_{1} e^{i \omega_{f m} t_{1}} \int_{-\infty}^{t_{1}} d t_{2} e^{i \omega_{m i} t_{2}}
\end{aligned}
$$

3. Scattering Matrix

- Be careful with integration (ε...)
- First and second order simplify to

$$
\begin{aligned}
& \langle f| S^{(1)}|i\rangle=-2 \pi i \delta\left(\omega_{f}-\omega_{i}\right)\langle f| V|i\rangle \\
& \langle f| S^{(2)}|i\rangle=-2 \pi i \delta\left(\omega_{f}-\omega_{i}\right) \sum_{m} \frac{\langle f| V|m\rangle\langle m| V|i\rangle}{\omega_{i}-\omega_{m}}
\end{aligned}
$$

4.Transition Matrix

- The scattering matrix is given by the transition matrix

$$
\langle f| S|i\rangle=-2 \pi i \delta\left(\omega_{f}-\omega_{i}\right)\langle f| T|i\rangle
$$

- which has the following expansion
$\langle f| T|i\rangle=\langle f| V|i\rangle+\sum_{m} \frac{\langle f| V|m\rangle\langle m| V|i\rangle}{\omega_{i}-\omega_{m}}+\sum_{m, n} \frac{V_{f m} V_{m n} V_{n i}}{\left(\omega_{i}-\omega_{m}\right)\left(\omega_{i}-\omega_{n}\right)}+\ldots$

4.Transition Matrix

- Scattering probability

$$
\left.\left.P_{s}=4 \pi^{2}|\langle f| T| i\right\rangle\left.\right|^{2} \delta^{2}\left(\omega_{f}-\omega_{i}\right)=2 \pi t|\langle f| T| i\right\rangle\left.\right|^{2} \delta\left(\omega_{f}-\omega_{i}\right)
$$

(not well defined because of $\mathrm{t} \rightarrow \infty$)

- Scattering rate

$$
\left.W_{S}=2 \pi|\langle f| T| i\right\rangle\left.\right|^{2} \delta\left(\omega_{f}-\omega_{i}\right)
$$

4.Transition Matrix

- Target is left in one (of many possible) state.
- Radiation is left in a continuum state
- Separate the two subsystems
(no entanglement prior and after the scattering event)
and rewrite the transition matrix

4.Transition Matrix

- Target: $\left|m_{k}\right\rangle, \epsilon_{k}$
- Radiation: $|k\rangle, \omega_{k}$
- Scattering rate

$$
\left.W_{f i}=2 \pi|\langle f| T| i\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{i}\right)
$$

go back to definition, using explicit states

$$
\left.W_{f i}=\left|\left\langle m_{f}, k_{f}\right| T\right| m_{i}, k_{i}\right\rangle\left.\right|^{2} \int_{-\infty}^{\infty} e^{i\left(\omega_{f}+\epsilon_{f}-\omega_{i}-\epsilon_{i}\right) t}
$$

4.Transition Matrix

- Work in Schrodinger pict. for radiation and Interaction pict. for target:

$$
\begin{gathered}
\left\langle m_{f}, k_{f}\right| T_{I_{t} I_{r}}\left|m_{i}, k_{i}\right\rangle=\left\langle m_{f}, k_{f}\right| T_{S_{t} S_{r}}\left|m_{i}, k_{i}\right\rangle e^{i\left(\omega_{f}-\omega_{i}\right) t} e^{i\left(\epsilon_{f}-\epsilon_{i}\right) t} \\
=\left\langle m_{f}, k_{f}\right| T_{I_{t} S_{r}}(t)\left|m_{i}, k_{i}\right\rangle e^{i\left(\omega_{f}-\omega_{i}\right) t}=\left\langle m_{f}\right| T_{k_{f}, k_{i}}(t)\left|m_{i}\right\rangle e^{i\left(\omega_{f}-\omega_{i}\right) t}
\end{gathered}
$$

- Scattering rate is then a correlation

$$
W_{f i}=\frac{1}{\hbar^{2}} \int_{-\infty}^{\infty} e^{i\left(\omega_{f}-\omega_{i}\right) t}\left\langle m_{i}\right| T_{k_{f}, k_{i}}^{\dagger}(0)\left|m_{f}\right\rangle\left\langle m_{f}\right| T_{k_{f}, k_{i}}(t)\left|m_{i}\right\rangle
$$

NOTE:Time evolution of target only
(e.g. lattice nuclei vibration)

5. Density of states

- \# of states $\sum_{k} n\left(E_{k}\right) \approx \int d^{3} n(E)$
- Plane wave in a cubic cavity

$$
\begin{gathered}
k_{x}=\frac{2 \pi}{L} n_{x} \rightarrow d^{3} n=\left(\frac{L}{2 \pi}\right)^{3} d^{3} k \\
\rho(E) d E d \Omega=\rho(k) d^{3} k=\left(\frac{L}{2 \pi}\right)^{3} k^{2} d k d \Omega
\end{gathered}
$$

5. Density of states

- Photons, $\quad k=E / \hbar c \rightarrow \frac{d k}{d E}=1 / \hbar c$

$$
\rho(E)=2\left(\frac{L}{2 \pi}\right)^{3} \frac{E^{2}}{\hbar^{3} c^{3}}=2\left(\frac{L}{2 \pi}\right)^{3} \frac{\omega_{k}^{2}}{\hbar c^{3}}
$$

- Massive particles, $E=\frac{\hbar^{2} k^{2}}{2 m}$

$$
\rho(E)=\left(\frac{L}{2 \pi}\right)^{3} \frac{k}{\hbar^{2}}=\left(\frac{L}{2 \pi}\right)^{3} \frac{\sqrt{2 m E}}{\hbar^{3}}
$$

6. Incoming Flux

- \# scatterer per unit area and time

$$
\Phi=\frac{\#}{A t}=\frac{v}{L^{3}}, \text { since } t=L / v, A=L^{2}
$$

- Photons, $\Phi=c / L^{3}$
- Massive particles, $\Phi=\frac{\hbar k}{m L^{3}}$

7.Thermal Average

- Average over initial state of target

$$
W_{S}(i \rightarrow \Omega+d \Omega, E+d E)=\rho(E) \sum_{i} P_{i} \sum_{f} W_{f i}
$$

- Scattering Cross Section

$$
\frac{d^{2} \sigma}{d \Omega d E}=\frac{1}{\hbar^{2}} \sum_{f} \int_{-\infty}^{\infty} d t e^{i \omega_{f i} t}\left\langle T_{i f}^{\dagger}(0) T_{f i}(t)\right\rangle_{t h} \frac{\rho(E)}{\Phi}
$$

Neutrons

- Using $\Phi_{i n c}$ and $\rho(E)$ for massive particles, the scattering cross section is:

$$
\frac{d^{2} \sigma}{d \Omega d \omega}=\frac{1}{2 \pi}\left(\frac{m L^{3}}{2 \pi \hbar^{2}}\right)^{2} \frac{k_{f}}{k_{i}} \int_{-\infty}^{\infty} e^{i \omega_{f i} t}\left\langle T_{i f}^{\dagger}(0) T_{f i}(t)\right\rangle
$$

Neutrons

- Evaluate T for neutrons, with states

$$
\left|k_{i, f}\right\rangle \rightarrow \psi_{k}(r)=e^{i k \cdot r} / L^{3 / 2}
$$

- we obtain $T_{k_{f} k_{i}}(t, Q)$ with $Q=k_{f}-k_{i}$

$$
\begin{aligned}
\left\langle k_{f}\right| T(t, r)\left|k_{i}\right\rangle & =\int_{L^{3}} d^{3} r \quad \stackrel{*}{k}_{f}(r) T(r, t) k_{i}(r) \\
& =\frac{1}{L^{3}} \int_{L^{3}} d^{3} r e^{i Q \cdot r} T(r, t)
\end{aligned}
$$

NeutronTransition Matrix

- We still need to take the expectation value with respect to the target states,

$$
T_{f i}=\frac{1}{L^{3}} \int_{L^{3}} d^{3} r e^{i Q \cdot r}\left\langle m_{f}\right| T(r, t)\left|m_{i}\right\rangle
$$

Fermi Potential

- T is an expansion of the interaction potential, here the nuclear potential
- analyze at least first order...

Fermi Potential

- Nuclear potential is very strong ($\left.\mathrm{V}_{0} \sim 30 \mathrm{MeV}\right)$
- And short range ($r_{0} \sim 2 \mathrm{fm}$)
- Not good for perturbation theory!
- Fermi approximation
- What is important is the product

$$
a \propto V_{0} r_{0}^{3}
$$

($\mathbf{a}=$ scattering length $)$ if $k r_{0} \ll 1$

Fermi Potential

neutron wavefunction

- Replace nuclear potential with weak, long range pseudo-potential
- Still, short range compared to wavelength
- Delta-function potential!

$$
V(r)=\frac{2 \pi \hbar^{2}}{\mu} a \delta(r)
$$

Scattering Length

- Free scattering length a,

$$
V(r)=\frac{2 \pi \hbar^{2}}{\mu} a \delta(r) \rightarrow \frac{2 \pi \hbar^{2}}{m_{n}} b \delta(r)
$$

- bound scattering length b (include info about isotope and spin)

$$
b=\frac{m_{n}}{\mu} a \approx \frac{A+1}{A} a
$$

(reduced mass: $\quad \mu=\frac{M m_{n}}{M+m_{n}}$)

Transition Matrix

- To first order, the transition matrix is just the potential

$$
T_{f i}=\frac{1}{L^{3}} \int_{L^{3}} d^{3} r e^{i Q \cdot r}\left\langle m_{f}\right| V(r, t)\left|m_{i}\right\rangle
$$

- Using the nuclear potential for a nucleus at a position R, we have

$$
T_{f i}=\frac{1}{L^{3}} \int_{L^{3}} d^{3} r e^{i Q \cdot r} \frac{2 \pi \hbar^{2}}{m_{n}} b(R) \delta(R) T(r, t)=\frac{2 \pi \hbar^{2}}{m_{n}} b(R) e^{i Q \cdot R(t)}
$$

Transition Matrix

- To first order, for many scatter at position r_{i}

$$
T_{f i}(t)=\frac{2 \pi \hbar^{2}}{m_{n}} \sum_{i} b_{i} e^{i Q \cdot r_{i}(t)}
$$

- The scattering cross section becomes

$$
\frac{d^{2} \sigma}{d \Omega d \omega}=\frac{1}{2 \pi} \frac{k_{f}}{k_{i}} \int_{-\infty}^{\infty} e^{i \omega_{f i} t} \sum_{\ell, j} b_{\ell} b_{j}\left\langle e^{-i Q \cdot r_{\ell}(0)} e^{i Q \cdot r_{j}(t)}\right\rangle_{t h}
$$

Scattering Lengths

- The bound scattering length depends on isotope and spin
- We need to take the average $b_{\ell} b_{j} \rightarrow \overline{b_{\ell} b_{j}}$
- $\quad j=\ell, \quad \overline{b_{\ell} b_{j}}=\overline{b^{2}}$
- $\quad j \neq \ell, \quad \overline{b_{\ell} b_{j}}=\bar{b}^{2}$
- Finally, $\overline{b_{\ell} b_{j}}=\overline{b^{2}} \delta_{j, \ell}+\bar{b}^{2}\left(1-\delta_{j, \ell}\right)$
- Coherent/Incoherent scattering length:

$$
\overline{b_{\ell} b_{j}}=\left(\overline{b^{2}}-\bar{b}^{2}\right) \delta_{\dot{z}, \ell}+\bar{b}^{2}=b_{i}^{2}+b_{c}^{2}
$$

Scattering lengths

- Coherent scattering length

$$
b_{c}=\bar{b}
$$

- Correlations in scattering events from the same target
(scale-length over which the incoming radiation is coherent in a QM sense)
- Simple average over isotopes and spins

Scattering Lengths

- Incoherent scattering length

$$
b_{i}^{2}=\left(\overline{b^{2}}-\bar{b}^{2}\right) \delta_{j, \ell}
$$

- Correlation of scattering events between different targets
- Variance of the scattering length over spin states and isotopes

Cross-section

- Averaging over the scattering lenght

$$
\begin{gathered}
\frac{d^{2} \sigma}{d \Omega d \omega}=\frac{1}{2 \pi} \frac{k_{f}}{k_{i}} \int_{-\infty}^{\infty} e^{i \omega_{f i} t} \sum_{\ell, j} \overline{b_{\ell} b_{j}}\left\langle e^{-i Q \cdot r_{\ell}(0)} e^{i Q \cdot r_{j}(t)}\right\rangle_{t h} \\
\text { we obtain } \\
\frac{d^{2} \sigma}{d \Omega d \omega}=\frac{1}{2 \pi} \frac{k_{f}}{k_{i}} \int_{-\infty}^{\infty} e^{i \omega_{f i} t} \sum_{\ell, j}(Q, \omega) \\
\left.b_{i}^{2}+b_{c}^{2}\right)\left\langle e^{-i Q \cdot r_{\ell}(0)} e^{i Q \cdot r_{j}(t)}\right\rangle_{t h} \\
S(Q, \omega)
\end{gathered}
$$

Cross-section

- Using the dynamic structure factors, we can write the cross section as

$$
\frac{d^{2} \sigma}{d \Omega d \omega}=N \frac{k_{f}}{k_{i}}\left[b_{i}^{2} S_{s}(Q, \omega)+b_{c}^{2} S(Q, \omega)\right]
$$

- These functions encapsulate the target characteristics, or more precisely, the target response to a radiation of energy ω and wavevector \vec{Q}

Structure Factors

- Self dynamic structure factor (incoherent)

$$
S_{S}(Q, \omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \omega_{f i} t}\left\langle\frac{1}{N} \sum_{\ell} e^{-i Q \cdot r_{\ell}(0)} e^{i Q \cdot r_{\ell}(t)}\right\rangle
$$

- Full dynamic structure factor (coherent)

$$
S(Q, \omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \omega_{f i} t}\left\langle\frac{1}{N} \sum_{\ell, j} e^{-i Q \cdot r_{\ell}(0)} e^{i Q \cdot r_{j}(t)}\right\rangle
$$

Intermediate Scattering Functions

- Self dynamic structure factor

$$
\begin{aligned}
S_{S}(Q, \omega)=\frac{1}{2 \pi} & \int_{-\infty}^{\infty} e^{i \omega_{f i} t} F_{s}(Q, t) \\
& F_{s}(Q, t)=\left\langle\frac{1}{N} \sum_{\ell} e^{-i Q \cdot r_{\ell}(0)} e^{i Q \cdot r_{\ell}(t)}\right\rangle
\end{aligned}
$$

- Full dynamic structure factor
$S(Q, \omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \omega_{f i} t} F(Q, t)$

$$
F(Q, t)=\left\langle\frac{1}{N} \sum_{\ell, j} e^{-i Q \cdot r_{j}(0)} e^{i Q \cdot r_{\ell}(t)}\right\rangle
$$

- These functions are the Fourier transform (wrt time) of the structure factors
- They contain information about the target and its time correlation.
- Examples:
- Lattice vibrations (phonons)
- Liquid/Gas diffusion

Crystal Lattice

- Position in $F(Q, t) \sim\left\langle\sum_{\ell, j} e^{-i Q \cdot x_{j}(0)} e^{i Q \cdot x_{\ell}(t)}\right\rangle$ is the nuclear lattice position
- Model as ID quantum harmonic oscillator
- position: $x=\sqrt{\frac{\hbar}{2 M \omega_{0}}}\left(a+a^{\dagger}\right)$
- Hamiltonian (phonons)

$$
\mathcal{H}=\frac{p^{2}}{2 M}+\frac{M \omega_{0}^{2}}{2} x^{2}=\hbar \omega_{0}\left(a^{\dagger} a+\frac{1}{2}\right)
$$

Crystal Lattice

- Assumption: ID, I isotope, I spin state \rightarrow Self-intermediate structure function:

$$
F_{S}(Q, t)=\left\langle e^{-i Q \cdot x(0)} e^{i Q \cdot x(t)}\right\rangle
$$

- Note: $\quad[x(0), x(t)] \neq 0 \quad$ (but it's a number)
- Use $\mathbf{B C H}$ formula: $e^{A} e^{B}=e^{A+B} e^{[A, B]} \ldots$

$$
F_{S}(Q, T)=\left\langle e^{-i Q \cdot[x(0)-x(t)]} e^{+\frac{1}{2}[Q \cdot x(0), Q \cdot x(t)]}\right\rangle
$$

- Simplify using (Bloch) formula:

$$
\left\langle e^{\alpha a+\beta a^{\dagger}}\right\rangle=e^{\left\langle\left(\alpha a+\beta a^{\dagger}\right)^{2}\right\rangle}
$$

- we get $F_{S}(Q, t)=e^{-Q^{2}\left\langle\Delta x^{2}\right\rangle / 2} e^{+\frac{1}{2}[Q \cdot x(0), Q \cdot x(t)]}$
- with

$$
\begin{gathered}
\left\langle\Delta x^{2}\right\rangle=2\left\langle x^{2}\right\rangle+2\langle x(0) x(t)\rangle-\langle[x(0), x(t)]\rangle \\
F_{S}(Q, t)=e^{-Q^{2}\left\langle x^{2}\right\rangle} e^{-Q^{2}\langle x(0) x(t)\rangle}
\end{gathered}
$$

- The crystal is usually in a thermal state.
- Calculate $\mathrm{F}(\mathrm{Q}, \mathrm{t})$ for a number state and then take a thermal average over Boltzman distribution

$$
\begin{aligned}
\langle n| x^{2}|n\rangle & =\frac{\hbar}{2 M \omega_{0}}(2 n+1) \\
\langle n| x(0) x(t)|n\rangle & =\frac{\hbar}{2 M \omega_{0}}\left[2 n \cos \left(\omega_{0} t\right)+e^{i \omega_{0} t}\right] \\
\text { - Replace } \quad n & \rightarrow\langle n\rangle
\end{aligned}
$$

Phonon Expansion

- Low temperature $\langle n\rangle \approx 0$

$$
\left\langle x^{2}\right\rangle=\frac{\hbar}{2 M \omega_{0}} \quad\langle x(0) x(t)\rangle=\frac{\hbar}{2 M \omega_{0}} e^{i \omega_{0} t}
$$

- Expand in series of $\frac{\hbar^{2} Q^{2}}{2 M} /\left(\hbar \omega_{0}\right)=E_{k i n} / E_{b i n d}$ and calculate the dynamic structure factor

$$
\begin{aligned}
& S_{S}(Q, \omega)=\mathcal{F}(F(Q, t) \\
& S_{S}(Q, \omega) \approx e^{-Q^{2} \frac{\hbar Q^{2}}{2 M \omega_{0}}}\left[\delta(\omega)+\frac{\hbar Q^{2}}{2 M \omega_{0}} \delta\left(\omega-\omega_{0}\right)+\right. \\
& \left.\frac{1}{2}\left(\frac{\hbar Q^{2}}{2 M \omega_{0}}\right)^{2} \delta\left(\omega-2 \omega_{0}\right)+\ldots\right]
\end{aligned}
$$

Phonon Expansion

- Neutron/q.h.o. energy exchange

Zero-phonon = no excitation

n-phonons

High Temperature

- We find a "classical" result, where

$$
F_{S}^{c l}=\mathcal{F}\left[G_{s}^{c l}(x, t)\right]
$$

and the space-time self correlation (classical) function $G_{s}^{c l}(x, t) d x$ is the probability of finding the h.o. at \times, at time t, if it was at the origin at time $t=0$.

$$
F_{z}^{c l}(Q, T)=e^{-\left(k_{b} T Q^{2} / M \omega_{0}^{2}\right)\left[1-\cos \left(\omega_{0} t\right)\right]}
$$

MIT OpenCourseWare
http://ocw.mit.edu

22.51 Quantum Theory of Radiation Interactions

 Fall 2012For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

