Axioms of Quantum Mechanics

22.51 Quantum Theory of Radiation Interaction - Fall 2012

1. The properties of a quantum system are completely defined by specification of its state vector $|\psi\rangle$.

The state vector is an element of a complex Hilbert space \mathcal{H} called the space of states.

2. With every physical property A there exists an associated linear, Hermitian operator A (called observable), which acts in the space of states H.

The eigenvalues of the operator are the possible values of the physical properties.

3.a (Born Rule) If $|\psi\rangle$ is the vector representing the state of a system and $|\varphi\rangle$ represents another physical state, there exists a probability $P(|\psi\rangle, |\varphi\rangle)$ of finding $|\psi\rangle$ in state $|\varphi\rangle$, which is given by the squared modulus of the inner product on \mathcal{H} :

$$P(|\psi\rangle, |\varphi\rangle) = |\langle\psi|\varphi\rangle|^2$$

3.b (*Wave function collapse*) If A is an observable with eigenvalues $\{a_n\}$ and eigenvectors $\{|n\rangle\}$, given a system in the state $|\psi\rangle$, the probability of obtaining a_n as the outcome of the measurement of A is

$$P(a_n) = |\langle n|\psi\rangle|^2$$

After the measurement the system is left in the state $|n\rangle$

4. The evolution of a closed system is unitary (reversible). The evolution is given by the time-dependent Schrödinger equation

$$i\hbar\frac{\partial|\psi\rangle}{\partial t} = H|\psi\rangle$$

where H is the Hamiltonian of the system and \hbar the reduced Planck constant.

22.51 Quantum Theory of Radiation Interactions Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.