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9.1 Harmonic Oscillator

We have considered up to this moment only systems with a finite number of energy levels; we are now going to
consider a system with an infinite number of energy levels: the quantum harmonic oscillator (h.o.).
The quantum h.o. is a model that describes systems with a characteristic energy spectrum, given by a ladder of
evenly spaced energy levels. The energy difference between two consecutive levels is ∆E. The number of levels is
infinite, but there must exist a minimum energy, since the energy must always be positive. Given this spectrum, we
expect the Hamiltonian will have the form

H|n〉 =
(

1
n+

2

)
~ω |n〉 ,

where each level in the ladder is identified by a number n. The name of the model is due to the analogy with
characteristics of classical h.o., which we will review first.

9.1.1 Classical harmonic oscillator and h.o. model

A classical h.o. is described by a potential energy V = 1kx2. If the system has a finite energy E, the motion is bound2
2

by two values ±x , such that V (x ) = E. The equation of motion is given by md x
0 0 2 = −kx and the kinetic energy isdx

of course T = 1mẋ2 = p2 . The energy is constant since it is a conservative system, with no dissipation. Most of the2 2m
time the particle is in the position x0 since there the velocity is zero, while at x = 0 the velocity is maximum.
The h.o. oscillator in QM is an important model that describes many different physical situations. We will study
in depth a particular system described by the h.o., the electromagnetic field. Another system that can be described
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by this model is solid-state crystals, where the oscillations of nuclei in the lattice can be described as a systems of
coupled oscillators (phonons).
Notice that any potential with a local minimum can be locally described by an h.o.. Provided that the energy is low
enough (or x close to x0), any potential can in fact be expanded in series, giving: V (x) ≈ V (x0) + b(x

2

− x0)
2 + . . .

where b = d V
dx2 |x0 .

9.1.2 Oscillator Hamiltonian: Position and momentum operators

We can define the operators associated with position and momentum. They are two observables (p,x) with the
commutation properties: [x, p] = i~. With these two operators, the Hamiltonian of the quanutm h.o. is written as:

p2 kx2 p2 1H = + = + mω2x2,
2m 2 2m 2

where we defined a parameter with units of frequency: ω = k/m.
We use the dimensionless variables,

p
P =

√

√ , X = x
√
mω

mω

ˆ ˆand H = H/ω, to simplify the expression to H = ω(X2 + P 2)/2 or H = ω (X2 + P 2).2
ˆWe have said initially that we expect the hamiltonian to have the form = (n + 1 ) n n , if expressed in an2

appropriate basis. This simply corresponds to diagonalizing the Hamilton
H
ian (thus the

|
ba
〉
s
〈
is
|
n is the energy

basis, or the basis formed by the eigenstates of the Hamiltonian). However the diagonalization is
{|
no
〉
t
}
as intuitive as

for simple TLS (or n TLS) because we are considering a system with infinite dimensions.
ˆThe operator H = (n+ 1 ) |n〉 〈n| is our guess for the diagonalized form of the Hamiltonian, which makes explicit the2

presence of energy levels, labeled by n. Correspondingly, there must be operators that act on the ladder of energy
levels. For example, the fundamental operations possible are the raising or lowering of 1 quantum of energy, as well
as an operator giving the number of energy quanta: N |n〉 = n |n〉. The raising and lowering operators act as the
following: a |n〉 ∝ |n− 1〉 and a† |n〉 ∝ |n+ 1〉. They are also called the annihilation and creation operators, as they
destroy or create a quantum of energy.
Instead of deriving rigorously these operators, we guess their form in terms of the X and P operators:

a = √1 x
2

√1
~
(X + iP ) = ω

2~
(
√
m + √ i p)

mω

a† = √1
~
(X

2
− iP ) = √1

2~
(
√
mωx− √ i p),

mω

and we will check a posteriori that indeed they act as annihilation and creation operators. Notice that a, a† are not
hermitian, but they are one the hermitian conj[ugate] of the other (a = (a†)† ). Also, we define the number operator
as N = a†a. The commutation properties are: a, a† = 1 and [N, a] = −a,

[
N, a†

]
= a†.

Also we have:

x =
√

~

√ (a + a)2mω
†

p = i mω~ (a† − a)2

? Question: Prove the commutation relationships of the raising and lowering operators.

[a, a†
1 1 i i

] = [X + iP,X − iP ] = ([X, iP ] + [iP,X]) = [X,P ] = [x, p] = 1
2~ 2~

− −
~

−
~

So we also have aa† = [a, a†] + a†a = 1 + a†a = 1 +N .

[N, a] = [a†a, a] = [a†, a]a = −a and [N, a†] = [a†a, a†] = a†[a, a†] = a†

Notice that from now on we will take as usual ~ = 1.

80



From the commutation relationships we have:

a |n〉 = [a,N ] |n〉 = an |n〉 −Na |n〉 → N(a |n〉) = (n− 1)(a |n〉),

that is, a |n〉 is also an eigenvector of the N operator, with eigenvalue (n 1). Thus we confirm that this is the
lowering operator: a |n〉 = cn |n− 1〉. Similarly, a† |n〉 is an eigenvector of N

−
with eigenvalue n+ 1:

a† |n〉 =
[
N, a†

]
|n〉 = Na† |n〉 − a†n |n〉 → N(a† |n〉) = (n+ 1)(a |n〉).

We thus have a |n〉 = cn |n− 1〉 and a† |n〉 = dn |n+ 1
S

〉. What are the coefficients cn, dn?
ince

〈n|N |n〉 = 〈n| a†a |n〉 = n

and
〈n| a†a |n〉 = (〈an|)(a |n〉) = 〈n− 1|n− 1〉c2n,

we must have cn =
√
n. Analogously, since aa† = N + 1, as seen from the commutation relationship:

d2n〈n+ 1|n+ 1〉 = 〈a†n|a†n〉 = 〈n| aa† |n〉 〈n| (N + 1) |n〉 = n+ 1

So in the end we have :

a |n〉 = √
n |n− 1〉 ; a† |n〉 =

√
n+ 1 |n+ 1〉 .

All the n eigenvalues of N have to be non-negative since n = 〈n|N |n〉 = 〈ψn1 |ψn1〉 ≥ 0 (this follows from the
properties of the inner product and the fact that ψn1 = a n is just a regular state vector). However, if we apply
over and over the a (lowering) operator, we could

|
arriv

〉
e at n

|
e
〉
gative numbers n: we therefore require that a 0 = 0

to truncate this process. The action of the raising operator a† can then produce any eigenstate, starting from
| 〉
the 0

eigenstate:
(a†)n|n〉 = √
n!

|0〉 .

The matrix representatio√n of these operator in the |n〉√basis (with infinite-dimensional matrices) is particularly simple,
since 〈n|a |n′〉 = δn′,n 1 n and n a† n′ = δ n+ 1:− 〈 | | 〉 n′,n+1

0
√
1 0 . . . 0 0 0 . . .

a =



0 0
√
2 . . . a† =

√
1 0 0 . . .

0 0 0 . . .

 

0
√
2 0 . . .



The Hamiltonian can be written in



terms of these oper



ators. W



e substitute a, a



† at the place of X and P , yielding
H = ω(a†a+ 1 ) = ω(N + 1 ) and the minimum energy ~ω/2 is called the zero point energy.2 2

9.1.3 Position representation

We have now started from a (physical) description of the h.o. Hamiltonian and made a change of basis in order to
arrive at a simple diagonal form of it. Now that we know its eigenkets, we would like to go back to a more intuitive
picture of position and momentum. We thus want to express the eigenkets |n〉 in terms of the position representation
(see also section 5.5.1).

∫The position representation corresponds to expressing a state vector |ψ〉 in the position basis: |ψ〉 = dx x ψ x =
dxψ(x) |x〉 (where |x〉 is the eigenstate of the position operator that is a continuous variable, hence th

〈
e in
|
t
〉
eg
|
r
〉
al).

This defines the wavefunction ψ(x) = x ψ .

∫

The wave function description in the x
〈
re
|
pr
〉
esentation of the quantum h.o. can be found by starting with the ground

state wavefunction. Since a |0〉 = 0 we have i√1 (X + iP ) |0〉 = √1 (
√
mωx + p√ ) |0〉 = 0. In the x representation,

2 2 mω

given ψ0(x) = 〈x| 0〉
1√ 〈x| (√ ip d

mωx+ √ 2

) |0〉 = 0 → (mωx+ )ψ0(x) = 0
2 ω dx

→ ψ (x) ∝ e−mωx /2
0

m
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(a†)nThe other eigenstates are built using Hermite Polynomials H 31
n(x), using the formula |n〉 = √

n!
|0〉 to derive

differential equations:

n
1

[√ 1 d
ψn(x) = 〈x|n〉 = √ mωx

n!2n
− √

mω dx

]
ψ0(x)

with solutions ψn(x) = 〈x| n〉 = √ 1
n

Hn(x)ψ0(x).2 n!

The n = 2 and n = 3 wavefunctions are plotted in the following figure, while the second figure displays the probability
distribution function. Notice the different parity for even and odd number and the number of zeros of these functions.
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Fig. 12: Left: Harmonic oscillator wavefunction. Right: corresponding probability distribution function for n = 2 (blue) and
n = 3 (Red, dotted).

Classically, the probability that the oscillating particle is at a given value of x is simply the fraction of time that it

spends there, which is inversely proportional to its velocity v(x) = x0ω 1− x2
at that position. For large n, the

x2
0

probability distribution becomes close to the classical one:
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Fig. 13: Left: Harmonic oscillator wavefunction. Right: corresponding probability distribution function for n = 40. In Red, the
classical probability.

31 For more details on Hermite Polynomials and their generator function, look on Cohen-Tannoudji. Online information from:
Eric W. Weisstein. Hermite Polynomial. From MathWorld–A Wolfram Web Resource.
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9.1.4 Heisenberg picture

We want now to study the time-evolution of the h.o. We first start with analyzing the evolution of the operators in
the Heisenberg picture. We have

da 1
= i[H, a] = i[ω(a†a+ ), a] = −iωa → a(t) = a(0)e−iωt

dt 2

Similarly:
da† 1

= i[H, a†] = i[ω(a†a+ ), a†] = iωa† → a†(t) = a†(0)eiωt
dt 2

Notice that we could have found this last relationship just by taking the hermitian conjugate of the first one.
Using these results, we can also find the time evolution of the position and momentum operators:

p(0)
x(t) = x(0) cos(ωt) + sin(ωt)

mω

p(t) = p(0) cos(ωt)−mωx(0) sin(ωt)

and the corresponding expectation values, e.g.

p(0)〈x(t)〉 = 〈x(0)〉 cos(ωt) + 〈 〉
sin(ωt)

mω

9.1.5 Schrödinger picture

An initia∑l state can be expressed in terms of the number eigenvectors: |ψ〉 = n cn |n〉. Then its evolution is simply:
|ψ(t)〉 = n cne

−inωt |n〉. From this expression, one can calculate e.g.

∑

〈x(t)〉 =
∑

cnc
∗
m 〈m x

n,m

| |n〉 e−iωt(n−m).

Since x only connects states that differ by n−m = ±1, it’s easy to see that the double sum simplifies and we retrieve
the expression above, found in the Heisenberg picture.

9.2 Uncertainty relationships

The operators x and p for a quantum h.o. do not commute, so they do not share any eigenstate, nor they share
eigenstates with the Hamiltonian. In particular the diagonal elements of x and p in the n -basis representation are
both zero, therefore the expectation values are also zero. In a series of measurements, it is

| 〉
possible to get a range of

values; we associate this dispersion of values with the root mean square value of the eigenvalues:

∆x =
√
〈x2〉 − 〈x〉2 (3)

∆p = 〈p2〉 − 〈p〉2 (4)

Given the expression for x and p in terms of a and a

√

† we can calculate x2 :

~〈x2〉 = n

〈 〉

2mω
〈 | aa+ a†a† + a†a+ aa† |n〉 (5)

~ ~
= 〈n|a†a+ aa† |n〉 = (2n+ 1) (6)

2mω 2mω

and in the same way, we can calculate
〈
p2
〉

√ : 〈p2〉 = m~ω

√ (2n+1). Since the expectation values are zero (〈x〉 = 〈p〉 = 0),2

the deviations are just: ∆x = 〈x2〉 and ∆p = 〈p2〉 and the uncertainty relation can be expressed by:

~
∆p∆x = (2n+ 1) (7)

2
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We see that in general ∆p∆x ~ , with equality for n = 0: the ground state of the harmonic oscillator is a state of2
minimum uncertainty. More ge

≥
nerally, for any potential V (x), the ground state of a local minimum is always a state

of minimum uncertainty (since the potential can be always approximated by an harmonic potential).
We expect that higher energy states do not saturat√e the uncertainty bound. Classically, when a system has some
finite energy, the particle is moving around so ∆x = 2x0. At the minimum energy (that classically is 0), the particle
is at rest, localized (∆x = 0). For the quantum h.o., even the minimum energy state is not localized, but rather it is
a gaussian packet (as described by ψ0(x)) thus the state does have some uncertainty in its position. Still, as expected
from the classical intuition, th〈is u〉ncerta〈inty is the minimum possible.
From the expectation values x2 and p2

〉
we can calculate the average kinetic and potential energy. We find that

the average potential and kinetic energy are the same, 〈T 〉 = 〈V 〉 = ~ω = 〈E〉 /2, as for classical conservative systems4
(virial theorem).

9.3 Coherent States

We now want to look at some connexion of the quantum h.o. with the classical one. We have seen that in the limit of
vanishing energy, the classical and quantum oscillators are very different, since the minimum energy for the quantum
h.o. is non-zero, while the classical h.o. is totally localized. On the opposite side, we saw that at high energy (high
n) the energy difference between two levels vanishes, ∆E = ~ω

~
≈ 0; thus the energy becomes continuous, asE (n+1/2) ω

it would be in the classical case. Still, to find a quantum-to-classical correspondence it is not enough to choose a
stationary eigenstate of the Hamiltonian with a high energy (high n): this state would still have zero expectation
value for the momentum and position. In contrast, the position evolution in classical mechanics is xcl = x0 cosωt:
ideally we would like to find a state |ψcl〉 such that 〈x(t)〉 = 〈ψcl(t)|x |ψcl(t)〉 = xcl, as usually stated by Ehrenfest
theorem. Coherent states achieve this result. For this reasons, these states are also called quasi-classical.
The coherent state was defined by Roy J. Glauber32. He was looking for a superposition of eigenstates that looked
as classical as possible, without invoking any decoherence or the action of an external environment. The coherent
states are pure quantum states, however when we look at expectation values with respect to these states, the limit
of high energy we recover the classical results . For example, although the operator x and p do not commute and
give rise to the known uncertainty relationships, when we consider the high energy limit of their expectation values
the uncertainties become a vanishing contribution.
Glauber idea was to introduce a complex classical variable α = √1 (X + iP ) (where X and P are the dimensionless

2

variables defined previously). The classical equations of motion for x and p define the evolution of the variable α:

dx p(t) dp
= , = −mω2 dα

x → = −iωα(t)
dt m dt dt

The evolution of α is therefore just a rotation in its phase space: α(t) = α(0)e−iωt. This is usual for a conservative
system (in classical mechanics) or closed systems in QM. The initial conditions thus specify the overall evolution,
α0 = α(0) c√ontains all the important information.

Since X = 2Re(α) and P =
√
2Im(α), the expectation values for X and P oscillate, as usual in the classical case

(again, here X and P are just normalized, classical variable).

〈X〉 = √1 (α0e
−iωt + α0

∗eiωt)
2

〈P 〉 = √−i (α e−iωt02
− α∗

0e
iωt)

The classical energy, given by ω/2(X2 + P 2) = ωα2
0, is constant at all time.

Now consider the QM problem, where the variables are replaced by the corresponding operators:

1
X = (a+ a†)/

√
2, P = −i(a− a†)/

√
2, H = ω(a†a+ ),

2

and consider the evolution of the operator a in the Heisenberg picture. Its expectation value is given by

d〈a〉
=

dt
−i〈[a,H]〉 = −i〈[a, ωa†a]〉 = −iω〈a〉

32 Roy J. Glauber, Coherent and Incoherent States of the Radiation Field, Phys. Rev. 131 2766–2788 (1963).
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Therefore the expectation value evolution is the same as for the α variable:

〈a(t)〉 = 〈a(0)〉 = e−iωt, 〈a(t)†〉 = 〈a(0)†〉eiωt

Inspired by this result, we consider a state that is an eigenstate of the annihilation operator a: a |α〉 = α |α〉. With

respect to this state we have 〈X = α (a+ ia†) α /
√
2 = (α+ α∗)/

√
2 = Re(α)/

√
2 = 0. The evolution of X will

then have the same oscillatory ch
〉
ara

〈
ct
|
er as for it

|
s c
〉
lassical counterpart. This eigenstate of the annihilation o

〈
pe
〉
rator

has the desired property and we thus identify it with a coherent state.
The expectation values of position and momentum with respect to a coherent state give rise to the classical result.
However, when considering the expectation value of the energy, there are still two contributions: the first one con-
tributes to the classical energy (ωa†a E = ω α 2

0 ), while the second term is a purely QM contribution (zero point
energy). The classical limit is reached

→
at higher

|
ene

|
rgy where the first contribution is much larger than the zero-point

energy ~ω/2.

9.3.1 Expansion in terms of number states

The coherent state can of course be expressed in terms of number eigenstates: α = n cn n . We want to derive
the coefficients cn. From

| 〉 ∑ | 〉

∞
a α = α α

∑ ∞
cna n =

∑ ∞
cn
√
n n 1 =

∑
cn+1

√
| 〉 | 〉 →

n=0

| 〉
n=1

| − 〉 n+ 1
n=0

|n〉

we obtain
∑∞

(αcn
n=0

− cn+1

√
n+ 1)

√
|n〉 = 0 → αcn = cn+1 n+ 1

We thus have a series of equations, 
 c1 = αc0

α α2

n

So in general c α
n = √ c0. We finally obtain c0


c2 = √ c1 =

2
√ c02

3

c3 = √α c = √α2 c03 6

from the normalization condition α α = 1:
n!

〈 | 〉

|c20| =
(
∑ 1

αn(α∗)m
−

n

)
=

(
∑ −1

m
|α|2n√

n!m!m,n

〈 | 〉
n!

n

)
= e−|α|2

The coherent state can thus be expressed in terms of the number states as

|α〉 = e−
1
2 |α|

2 ∑∞ αn√ n
n!n=0

| 〉

This also gives the probability for obtaining a particular energy level n when the system is in a quantum coherent
state:

n
n

Pα(n) = n|α〉|2 = e−〈n〉 〈 〉|〈
n!

where we have used that the average number of photons is 〈n〉 = 〈α| a†a |α〉 = |α|2. Notice also that ∆n2 = α 2. We
thus see that the coherent states have a Poissonian distribution.

| |
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9.3.2 Non-Orthogonality

The coherent states |α〉 do not form a proper basis, since they are eigenvectors of a non-hermitian operator. In
particular they are not orthogonal (even if they are normalized by the choice of c0):

√
〈 | 〉

∑
−(|α|2+|β|2)/2 ∗ n m 2 2 2 2 ∗

α β = e (α ) β / n!m!〈n|m〉 = e−(|α| +|β| )/2
∑

(α∗β)n/n! = e−(|α| +|β| −2α β)/2

n,m n

Although not orthogonal, their superposition goes to zero as |α− β| → 0, since

| 〈 | 〉|2 −(|α|2+|β|2 ∗

α β = e −2α β)/2e−(|α|2+|β|2−2αβ∗)/2 = e−|α−β|2

Also, the set of coherent states is complete:

|α〉 〈α| dα/π = 11

Because of this closure relation, any state can be

∫

written in terms of coherent state superposition, thus the coherent
states form an overcomplete basis.

9.3.3 Uncertainty relationships

We have already seen that

i〈X =
√ 1〉 2Re[α] = √ (α+ α∗), 〈P 〉 = −i

√
2Im[α] =

2
√ (α∗
2

− α)

Now consider the variance. We have:

〈
X2
〉 1 1
= 〈α| a2 + (a†)2 + aa† + a†a |α〉 = (α2 + (α∗)2 + 2α∗α+ 1)

2 2

and 〈 1 1 1
P 2
〉
= 〈α| a2 + (a†)2 − aa† − a†a |α〉 = − (α2 + (α∗)2 2α∗α 1) = [1 (α α∗)2]

2 2
− −

2
− −

and for example:

∆X2 1 1
= [(α2 + (α∗)2 + 2α∗α+ 1)− (α+ α∗)2] =

2 2

We then have ∆X2 = 1 and ∆P 2 = 1 so that the uncertainty relationship is saturated:2 2

1
∆X∆P =

2

The coherent state is thus a minimum uncertainty state (as the number states were).

? Question: What are the uncertainty relationship in terms of the variables x and p?

√

~ ∗

√

~mω〈x〉 = (α+ α ), 〈p〉 = i (α ∗

2
− α )

mω 2
and

〈

x2〉 ~
= (α2 + (α∗)2 + 2α∗α+ 1)

2mω
~2 mω

p = (α2 + (α∗)2
2

− 2α∗α− 1)

We thus have the uncertainties for x and p a

〈

nd

〉

their uncertainty relationship

~ ~
∆x2 = , ∆p2

mω ~
= ∆x∆p =

2mω 2
→

2
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9.3.4 X-representation

We now want to obtain an expression for the wavefunction representing a coherent state, that is, we want to find the
x-representation of the coherent state: 〈x|α〉. For this, we start from the equation

〈x| a |α〉 = α〈x|α〉
√

as well as the explicit form of a in terms of x and p, a = mω√
2~
x+ √ i

2mω~
p

〈x| a |α〉 = 〈x|
(√

mω
x+ i

2~

√
1

p α
2~mω

)
| 〉

Now we define the wavefunction in the x-representation 〈x|α〉 = ψα(x) and we remember that

〈x| p |ψ〉 = −i~∂xψ(x)

and 〈x| p |x′〉 = −i~∂xδ(x − x′) to obtain:

〈x|
(√

mω
x+ i

√
1

p

)
mω ~ ∂|α〉 = x

2 ~mω

(√
+

~ 2 2~

√

2mω ∂x

)
〈x|α〉

Equating with the expression obtained before yields the differential equation:

∂
ψα(x) =

∂x

(√
2mω mω

α
~

− x
~

)
ψα(x)

with solution √
2mωαx −mωx2

ψα(x) = Ae ~ e 2~

The constant A can be as usual obtained from the normalization condition:
∫ ∞ mω 1/4 2

| 2 α

ψα(x)| dx = 1 → A =
−∞

(

2π~

)
e− 2

The wavefunction representation is thus a Gaussian wavepacket:

ψ (x) =
(mω )1/4 2 2mω

e−
α

e
√

~
αx m

α 2 e−
ω

2~ x
2

2π~

(not just a simple Gaussian, since α can be complex).

87



9.4 Phonons

We have introduced the harmonic oscillator as an interesting model because of the energy level structure it gives rise
to. A second reason for its utility is that it can model many different systems around their equilibrium point. Here
we show how it can be used to describe vibrations in a crystal lattice and how the quantum-mechanical description
can be used to derive some of the lattice properties, such as its specific heat.

9.4.1 Harmonic oscillator model for a crystal

We consider a crystal formed by ions of mass M in a lattice (for simplicity we will consider a monoatomic, one-
dimensional lattice).
The ion equilibrium positions are Rn = nd, with d the lattice constant, but the actual position of the ions is
rn = Rn + xn, where xn is the displacement from the equilibrium.
The interaction potential among the ions is

1
U =

∑ 1U(rn − rm) =
∑

U(Rn m
2 2
n,m n m

−R + xn
,

− xm)

Assuming the displacement xn is small, we can expand the potential as:

1 1
U =

∑
U(Rn −Rm) +

∑ 1
(x Rn x )2∂2n − xm)∂U( −Rm) + (xn m (Rn Rm)

2 2 4
n,m n,m

∑

n,m

− U −

The first term Ueq = 1
∑

n,m U(Rn − Rm) is the interaction potential at equilibrium, which is not of interest here.2

Consider the linear term:

1∑ 1
(xn − xm)∂U(Rn −Rm) =

∑
xn
∑

[∂U(Rn −Rm)− ∂U(Rm −Rn)] =
∑

xn
∑

∂U(Rn
2 2
n,m n m n m

−Rm)

The term m ∂ (Rn Rm) = Fn is the total force exerted on the atom n by all the other atoms. When all the
atoms are at equ

U
ilibriu

−
m, this force must be zero, since there can be no net force at equilibrium. We are then left

with only t

∑

he second order term:

1
U =

2

∑
(x 2
n

n,m

− xm) ∂2xU

If we assume that only neighboring ions interact, to second order, we retrieve an harmonic potential:

1
U = K

2

∑
(xn

n

− xn+1)
2

Then, the Hamiltonian can be written as:

H =
∑ p2n 1

+ K x
2M 2

∑
( n

n n

− xn+1)
2

while the equation of motion for each oscillator is:

∂U
Mẍn = − = −K[2xn n

∂ n
− x −1 − xn+1]

x
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9.4.2 Phonons as normal modes of the lattice vibration

The classical oscillator model is solved by guessing a solution in terms of waves (normal modes of the oscillation):

x (t) ∝ e−ikRne−iωkt
k

This solution is motivated by the translation symmetry of the lattice. We can check that the solution we guessed is
the correct one, by inserting it in the equation of motion

∂U
Mẍn = −

∂xn
→ −Mω2

kxn = −K[2x − x − x ] = −Kx [2− eikd − e−ikdn n−1 n+1 n ]

Thus if we set ω2
k = K 2[1− cos(kd)] the equation is verified. The relationship:M

kd
ω(k) = 2ω0

∣∣
sin

(

2

)∣∣
,

with ω0 =
√
K/M , is called the dispersion relation, which

∣∣

describes

∣∣

the frequency (energy) of the wave as a function
of the wavelength.
This solution describes waves propagating in the chain with phase velocity c = ω/k and group velocity v = ∂ω

g (the∂k
speed of sound in the given material). At small k the two velocities are equal, but for large k (small spacing between
ions) we have vg → 0.

We can now turn to the corresponding quantum-mechanical model, by replacing the position and momentum coor-
dinates in the Hamiltonian by the corresponding operators:

H =
∑ p2n 1

+ K
2M 2

n

∑
(xn

n

− xn+1)
2

Inspired by the classical solution, we also look for solutions (i.e. eigenvectors that diagonalize the Hamiltonian)
in terms of waves. Then in this basis, xn and pn will be expressed as linear combinations of waves with different
wavevectors, e.g.:

1
xn = √

N

∑
X eikRn
k

k

We then rewrite the operator Xk (and Pk) in terms of the creation and annihilation operators ak, a
†
k:

1 1
x = √

∑
√

(
a eikRn

n k + a†
NM 2ω ke

−ikRn

kk

)

and
M

pn = −i
√ ∑√

ωk
(
a ikRn ikRn
ke

− − a†keN 2
k

)

Similar to the solution for the simple h.o. we w †
∑
ant to verify that the operators ak, ak diagonalize the Hamiltonian.

p2
We thus first calculate the kinetic energy, T = n

n .2M

2 M ω ω
p = −

∑
k h

a†a† e−i(k+h)Rn a†a e−i(k−h)Rn + a a ei(k+h)Rn i
n k h

4 h k h k aka
†

N he
(k−h)Rn

k,h

√ [
− −

]

We then take the sum over n, remember that Rn = nd where n is an integer and d the distance between two ions,
and invert the order of the sums:

1
T = −

∑√
ωkωh

[
a†a†

∑
e−i(k+h)Rn

k h − ak
†ah

∑
e−i(k−h)Rn + . . .

4N
k,h n n

]
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The sums
∑

n e
−i(k+h)Rn =

∑
n e

−i(k+h)nd are zero unless the exponent argument h+ k is zero:

1
T = −

∑√
ωkωh

[
a†ka

†
hδk, h

4N
−

k,h

− a†kahδk,h + . . .
]

We thus obtain:
1

T = −
4

∑
ωk

k

[
a†ka

†
−k − a†kak + aka−k − aka

†
k

]

We then calculate the potential energy. First we calculate xn − xn+1:

1 1
xn − xn+1 = √

NM

∑
√
2ωkk

(
a eikRn + a†e−ikRn − a eikRn+1 − a†e−ikRn+1
k k k k

)

1
= √

∑ 1√
(
a eikRn(1− eikd) + a†e−ikRn(1− e−ikdk

NM 2ω k )
kk

)

1 i d
= √

∑ −2 k√ sin

( )(
a n+d/2)
ke
ik(R + a†ke

−ik(Rn+d/2)

NM 2ωk 2
k

)

The potential energy is then:

1 K 4 sin2 kd

U = K
∑

(x 2
n − xn+1) = −

∑ (
2 ak

†a† k a†kak aka k aka
†

2 2NM 2ω k
k

) [
−

n k

− − − − −
]

(where we used the same identities for the sum of exponential and the fact that sin kd sin hd δ h = sin2 kd
k, ).2 2 − 2

By summing the potential and kinetic energy and imposing as before:

( ) ( ) ( )

kd
ωk = 2ω0

∣∣
sin

(

2

)∣∣

(with ω2
0 = K ) we can simplify the Hamiltonian to:M

∣∣ ∣∣

1H =
∑ 1

ωk

(
a†kak + akak

† =
2

) ∑
ωk

k

(
a†kak + 2

k

)

The operators ak, a
†
k do diagonalize the Hamiltonian. The number operator nk = a†kak describes the excitation

number of a normal mode of the ion vibration. Instead of talking of excitations, we can introduce quasi particles,

called phonons. The number of phonons then corresponds to the number of excitations. Thus the operators ak, a
†
k

can create or annihilate a phonon of mode k.

9.4.3 Thermal energy density and Specific Heat

We want to first calculate the thermal energy density u = E/V and then the specific heat, cV = ∂u for a crystal at∂T
thermal equilibrium.
The thermal energy is given by the lattice vibration. Thus we want to calculate:

〈E〉 = Tr {ρH}

with the Hamiltonian given above. The system in thermal equilibrium is described by the usual distribution:

e−βH
ρ =

Z
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Notice than that 〈E〉 = −∂ lnZ . We thus need to calculate the partition function. Computing the trace in the number∂β

state basis, we have:

Z = Tr

{
1 1

exp

[
−β
∑

ωk

(
a†kak +

)]}
= Tr

{
∏

exp

[
−βωk

(
a†kak +2 2

k k

)]}

=
∏ −

e−βωk/2
∑ e βωk/2

(e−βωk)n =
k n

∏
1

k
− e−βωk

Taking the derivative of the logarithm, we find:

1 1
u = − k

∂β( Z) =
V V

∑ ω ωkβ
ln coth

2 2
k

( )

This can also be written in terms of the average phonon number for the mode k,

〈n 〉 = n(k) = Tr
{
a†a ρ

}
= [eβωk 1

k k k − 1]− :

1
u =

∑ 1
ωk[n(k) + ]

V 2
k

The specific heat is then:
∂u

cV = =
∂T

∑ ω2
k

k 4V kbT 2 sinh2 ωk

2kbT

Note that at high temperature (small β) this is approximated by c

( )

kb
V k = N kb , which is the classical Dulong-V V

Petit law, stating that the specific heat is independent of the tempe
≈
rat

∑

ure and given by the density n = N/V and
the system’s dimension D, cV = Dnkb.
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