22.51 Quantum Theory of Radiation Interactions

Mid-Term Exam

October 27, 2010

Problem 1: Electron Spin: Magnetization

Consider an isolated electron with spin- $\frac{1}{2}$, placed in a large magnetic f eld $\vec{B} = B_z \vec{z}$ at zero temperature. The spin is in the state

 $|\psi\rangle = c_0|\uparrow\rangle + c_1|\downarrow\rangle$

where $|\uparrow\rangle \equiv |S_z = +\frac{\hbar}{2}\rangle$ ($|\downarrow\rangle \equiv |S_z = -\frac{\hbar}{2}\rangle$) represents the spin state aligned (anti-aligned) with the vertical z-axis.

We now assume that we can measure the magnetic dipole $\vec{\mu} = \gamma \vec{S} = \gamma \hbar \frac{\vec{\sigma}}{2}$ of this single spin (with γ the gyromagnetic ratio of the electronic spin):

a) What is the probability of f nding an outcome $\mu_z > 0$? What is the spin state immediately after the measurement?

Solution:

The eigenstates of μ_z are $|\uparrow\rangle$ and $|1\rangle$ with eigenvalues $\pm \gamma \frac{\hbar}{2}$. Assuming $\gamma > 0$, the probability of f nding $\mu_z > 0$ in a measurement is simply $p(\mu_z > 0) = |c_0|^2$. The spin state is projected into the corresponding eigenstate $|\psi\rangle' = |\uparrow\rangle$. (For $\gamma < 0$ it would have been $p(\mu_z > 0) = |c_1|^2$ and $|\psi\rangle' = |\downarrow\rangle$)

b) What is the average magnetization $\langle \mu_z \rangle$ in the z direction?

Solution:

We need to calculate $\langle \psi | \mu_z | \psi \rangle = (c_0^* \langle \uparrow | + c_1^* \langle \downarrow |) \mu_z (c_0 | \uparrow \rangle + c_1 | \downarrow \rangle)$. Since μ_z is already diagonal in the basis $|\uparrow\rangle, |\downarrow\rangle$ this is simply $\langle \mu_z \rangle = \gamma \frac{\hbar}{2} (|c_0|^2 - |c_1|^2) = \gamma \hbar (|c_0|^2 - \frac{1}{2})$.

c) If the magnetic f eld is aligned with the z-axis, $\vec{B} = B_z \vec{z}$ and the spin is in its ground state, what are c_0 and c_1 ? What is now $\langle \mu_z \rangle$?

[Assume that the only interaction is the Zeeman interaction, $\mathcal{H}_Z = \hbar \gamma B_z \sigma_z / 2$]

Solution:

The energy levels of the Zeeman interaction are simply the eigenvalues of \mathcal{H}_Z , $\pm \gamma B_z \frac{\hbar}{2}$ corresponding to the eigenvectors $|\uparrow\rangle$, $|\downarrow\rangle$. Assuming $B_z > 0$ and $\gamma > 0$ (or more generally $\gamma B_z > 0$), the eigenvector $|\downarrow\rangle$ has thus the lowest energy. Then the state is simply $|\psi\rangle = |\downarrow\rangle$, that is $|c_1| = 1$ (or $c_1 = 1$ up to an unimportant phase factor) and $c_0 = 0$. The average magnetization is then $\langle \mu_z \rangle = -\gamma \frac{\hbar}{2}$.

If $\gamma B_z < 0$ the ground state is instead $|\uparrow\rangle$ and $\langle \mu_z \rangle = \gamma \frac{\hbar}{2}$.

Now assume that we cannot achieve zero temperature, but only a temperature T (as provided e.g. by liquid Nitrogen), so that the spin is at thermal equilibrium in the f eld $\vec{B} = B_z \vec{z}$.

d) What is the state of the spin?

Solution:

At finite temperature, we expect to have a mixed state as given by the canonical ensemble. Thus the state is given by $\rho = e^{-\beta \mathcal{H}_Z}/Z$, where $Z = \text{Tr} \{e^{-\beta \mathcal{H}_Z}\}$. For this simple Hamiltonian we can calculate the state explicitly:

$$\rho = \frac{e^{-\beta\gamma B_z \hbar/2} |\uparrow\rangle \langle\uparrow| + e^{\beta\gamma B_z \hbar/2} |\downarrow\rangle \langle\downarrow|}{e^{-\beta\gamma B_z \hbar/2} + e^{\beta\gamma B_z \hbar/2}}$$

Solution

20 points

Notice that the partition function $Z = 2 \cosh(\beta \gamma B_z \hbar/2)$. We can also write the state as:

$$\rho = e^{-\beta \mathcal{H}_Z} / Z = \left[\cosh\left(\beta \gamma B_z \hbar/2\right) \mathbb{1} - \sinh\left(\beta \gamma B_z \hbar/2\right) \sigma_z \right] / Z = \frac{1}{2} \left[\mathbb{1} - \tanh\left(\beta \gamma B_z \hbar/2\right) \sigma_z \right]$$

e) What is the average magnetization? How many spins would you need in order to achieve the same magnetization as in question c?

[Hint: you can assume a temperature T = 77K which corresponds to ≈ 1600 GHz and a magnetic f eld $B \approx 6$ Tesla which gives a Zeeman energy $\hbar\gamma B \approx 160$ GHz.]

Solution:

For a mixed state, the expectation value of an observable is $\langle O \rangle = \text{Tr} \{\rho O\}$. Thus the magnetization is $\langle \mu_z \rangle = \text{Tr} \{\rho \mu_z\}$ or:

$$\begin{split} \langle \mu_z \rangle &= \operatorname{Tr} \left\{ \frac{e^{-\beta\gamma B_z \hbar/2} |\uparrow\rangle \langle\uparrow| + e^{\beta\gamma B_z \hbar/2} |\downarrow\rangle \langle\downarrow|}{e^{-\beta\gamma B_z \hbar/2}} \frac{\gamma \hbar}{2} (|\uparrow\rangle \langle\uparrow| - |\downarrow\rangle \langle\downarrow|) \right\} \\ &= \frac{\gamma \hbar}{2} \frac{e^{-\beta\gamma B_z \hbar/2} - e^{\beta\gamma B_z \hbar/2}}{e^{-\beta\gamma B_z \hbar/2} + e^{\beta\gamma B_z \hbar/2}} = -\frac{\gamma \hbar}{2} \tanh(\beta\gamma B_z \hbar/2) \end{split}$$

This result could have been found also by remembering that all average properties of a system can be found from the partition function, in particular the internal energy is $\langle E \rangle = -\frac{\partial \ln Z}{\partial \beta}$. The magnetization μ_z is related to the internal energy by the simple relation $\mathcal{H}_z = \mu_z B_z$. Then

$$\langle \mu_z \rangle = -\frac{1}{B_z} \frac{\partial \ln Z}{\partial \beta} = -\frac{1}{B_z Z} \frac{\partial Z}{\partial \beta} = -\frac{\gamma \hbar B_z}{2} \frac{2 \sinh\left(\beta \gamma B_z \hbar/2\right)}{B_z 2 \cosh\left(\beta \gamma B_z \hbar/2\right)} = -\frac{\gamma \hbar}{2} \tanh\left(\beta \gamma B_z \hbar/2\right)$$

At the temperature given, $T \approx 77$ K, $1/\beta = k_b T \approx 1600$ GHz. Then $\beta \gamma B_z \hbar/2 \approx \frac{1}{2} \frac{160}{1600}$ Temperature $\frac{1}{20}$. To first order $\tanh(0.05) \approx 0.05$. Then the magnetization of one spin at 77K is $\langle \mu_z \rangle = -\frac{\gamma \hbar}{2} \frac{1}{20}$ and we need about 20 spins to have the same amount of magnetization as one spin at zero temperature.

Problem 2: Electronic Spin: Dynamics

We consider again an electronic spin-1/2 subjected to an external f eld B_z via the Zeeman interaction.

a) We consider two cases, where the initial state is either what you found in Problem 1, question c or in Problem 1, question d. The initial state is rotated by 90° by the operator $U_y = e^{i\pi/4\sigma_y}$, to be aligned with the x-axis and it then evolves under the Zeeman interaction.

By choosing the most eff cient "picture" (Schrödinger, Heisenberg or interaction picture), calculate $\langle \mu_x(t) \rangle$ for the two initial states. [Hint: i) What is $Ue^A U^{\dagger}$ for U unitary? ii) $e^A Be^{-A} = B + [A, B] + \dots \frac{1}{n!} [A, [A, [\dots, B]]].$]

Solution:

Since we want to calculate the evolution of an observable (and for different initial states) it is more convenient to adopt the Heisenberg picture, in which the observables are time-dependent and the states are constant.

First we calculate $\mu_x(t)$ in the Heisenberg picture under the action of the the Zeeman Hamiltonian \mathcal{H}_Z .

$$\mu_x(t) = U^{\dagger}(t)\mu)x(0)U(t) = e^{i\mathcal{H}_z t/\hbar} \left(\frac{\hbar\gamma}{2}\sigma_x\right)e^{-i\mathcal{H}_z t/\hbar}$$

Now $\mathcal{H}_Z = \hbar \gamma B_z \sigma_z / 2$ and we can call $\omega = \gamma B_z$. Also remember that

$$e^{i\omega t\sigma_z/2}\sigma_x e^{-i\omega t\sigma_z/2} = \sigma_x \cos(\omega t) - \sigma_y \sin(\omega t).$$

This could have also been calculated from the formula above, $e^A B e^{-A} = B + [A, B] + \dots \frac{1}{n!} [A, [A, [\dots, B]]]$, with $A = i\omega t/2\sigma_z$ and $B = \sigma_x$ and the usual commutation relationships of the Pauli matrices. Then

$$\mu_z(t) = \frac{\hbar\gamma}{2} \left(\sigma_x \cos(\omega t) - \sigma_y \sin(\omega t) \right)$$

30 points

and $\langle \mu_x(t) \rangle = \frac{\hbar\gamma}{2} (\langle \sigma_x \rangle \cos(\omega t) + \sin(\omega t) \langle \sigma_y \rangle)$. We thus need to calculate $\langle \sigma_x \rangle$ and $\langle \sigma_y \rangle$ with respect to the two initial states (pure state at zero temperature and mixed state). The initial states after the rotation U_y are :

$$U_y|\downarrow\rangle = |+\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle + |\downarrow\rangle), \qquad U_y\left(e^{-\beta\mathcal{H}_Z}/Z\right)U_y^{\dagger} = \frac{e^{\beta\hbar\gamma B_z\sigma_x/2}}{2\cosh\left(\beta\gamma B_z\hbar/2\right)}$$

which follows from $Ue^A U^{\dagger} = e^{UAU^{\dagger}}$ and $U_y \sigma_z U_y^{\dagger} = -\sigma_x$. Also notice that this state can be written as:

$$\rho_x = \frac{e^{\beta\hbar\gamma B_z \sigma_x/2}}{2\cosh\left(\beta\gamma B_z\hbar/2\right)} = \frac{1}{2} [\mathbb{1} + \tanh\left(\beta\gamma B_z\hbar/2\right)\sigma_x]$$

From these states we can calculate $\langle \sigma_x \rangle = \langle + |\sigma_x| + \rangle = 1$ and Tr $\{\rho_x \sigma_x\} = \tanh(\beta \gamma B_z \hbar/2)$, while $\langle \sigma_y \rangle = 0$ for both states. Notice that these results could have been obtained even by simply noting that after rotating the states, the expectation value of σ_x should have been equal to the expectation value of σ_z (calculate in Problem 1) before the rotation.

Finally, we have $\langle \mu_x(t) \rangle = \frac{\gamma \hbar}{2} \cos(\gamma B_z t)$ for the ground state at zero temperature and $\langle \mu_x(t) \rangle = \frac{\gamma \hbar}{2} \tanh(\beta \gamma B_z \hbar/2) \cos(\gamma B_z t)$ for the thermal state.

b) We now want to describe the thermalization process that gives rise to the state you found in Problem 1.d. When we raise the temperature from T = 0 to $T \approx 77K$, the electronic spin will undergo an evolution to reach a new thermal state under the action of the Zeeman Hamiltonian and the coupling with a reservoir. We can represent this thermalization process by the Lindblad operators $L_1 = \sqrt{\alpha}\sigma_-$, $L_2 = \sqrt{1 - \alpha}\sigma_+$ where $\sigma_+ = |0\rangle\langle 1|$ ($\sigma_- = |1\rangle\langle 0|$) and $\alpha = \frac{1}{2}[1 - \tanh(\beta\hbar\gamma B_z/2)]$. Write out the Lindblad equation describing the total evolution of the system.

Solution:

The Lindblad equation is the differential equation:

$$\dot{\rho}(t) = -i[\mathcal{H}, \rho(t)] + \sum_{k} \left[L_k \rho(t) L_k^{\dagger} - \frac{1}{2} (L_k^{\dagger} L_k \rho(t) + \rho(t) L_k^{\dagger} L_k) \right]$$

In the specif c case of the problem this becomes:

$$\dot{\rho} = -i\frac{1}{2}\hbar\omega[\sigma_z,\rho] + \alpha \left[\langle 1|\rho|1\rangle|0\rangle\langle 0| -\frac{1}{2}\left(|1\rangle\langle 1|\rho+\rho|1\rangle\langle 1|\right) \right] + (1-\alpha) \left[\langle 0|\rho|0\rangle|1\rangle\langle 1| -\frac{1}{2}\left(|0\rangle\langle 0|\rho+\rho|0\rangle\langle 0|\right) \right]$$

where we used the fact that $(\sigma_{-})^{\dagger}\sigma_{-} = (|1\rangle\langle 0|)(|0\rangle\langle 1|) = |1\rangle\langle 1|$ and $\sigma_{+}^{\dagger}\sigma_{+} = |0\rangle\langle 0|$.

c) What is $\dot{\rho_{00}}$, where $\rho_{00} = \langle 0|\rho|0\rangle$? What is $\dot{\rho}_{11}$? Take the steady-state (SS) limit of the system of equations you found and calculate ρ_{00}^{SS} and ρ_{11}^{SS} . Compare the result with the state you found in Problem 1.d.

Solution:

We need to project out $\langle 0|\dot{\rho}|0\rangle$:

$$\begin{split} \dot{\rho_{00}} &= \langle 0| \left(-i\frac{1}{2}\hbar\omega[\sigma_z,\rho] \right) |0\rangle + \alpha \langle 0| \left[\rho_{11}|0\rangle \langle 0| -\frac{1}{2} \left(|1\rangle \langle 1|\rho + \rho|1\rangle \langle 1| \right) \right] |0\rangle \\ &+ (1-\alpha) \langle 0| \left[\rho_{00}|1\rangle \langle 1| -\frac{1}{2} \left(|0\rangle \langle 0|\rho + \rho|0\rangle \langle 0| \right) \right] |0\rangle \end{split}$$

The f rst term is zero, since $\sigma_z = |0\rangle\langle 0| - |1\rangle\langle 1|$ yielding $\langle 0|[\sigma_z, \rho]|0\rangle = \langle 0|(\sigma_z \rho - \rho \sigma_z)|0\rangle = \langle 0|\rho|0\rangle - \langle 0|\rho|0\rangle$. The second term yields $\alpha \rho_{11}$ and the third term $-(1 - \alpha)\rho_{00}$. Thus we have:

$$\dot{\rho_{00}} = \alpha \rho_{11} - (1 - \alpha) \rho_{00}$$

We can calculate $\dot{\rho}_{11}$ in a similar way, or remember that $\rho_{11} + \rho_{00} = 1$ so that $\dot{\rho}_{11} = -\dot{\rho}_{00}$:

$$\dot{\rho}_{11} = -\alpha \rho_{11} + (1 - \alpha) \rho_{00}$$

We then have the system of equations:

$$\begin{cases} \dot{\rho_{00}} = \alpha - \rho_{00} \\ \dot{\rho_{11}} = (1 - \alpha) - \rho_{11} \end{cases}$$

At the steady state, $\dot{\rho} = 0$ we obtain $\rho_{00} = \alpha = \frac{1}{2} [1 - \tanh(\beta \hbar \gamma B_z/2)] = \frac{e^{-\beta \hbar \gamma B_z/2}}{2 \cosh(\beta \hbar \gamma B_z/2)}$ and $\rho_{11} = \frac{1}{2} [1 + \tanh(\beta \hbar \gamma B_z/2)] = \frac{e^{\beta \hbar \gamma B_z/2}}{2 \cosh(\beta \hbar \gamma B_z/2)}$. These are the same values as for the thermal state in Problem 1. If we can prove that at the steady state $\rho_{10} = \rho_{01}^* = 0$ then we have recovered the thermal state.

Notice that in the Exam I had written $\alpha = \frac{1}{2}[1 - \tanh(\beta \hbar \gamma B_z/2)]$ which would have given a result off by a factor 2

d) Now calculate as well $\dot{\rho_{01}}$ and the relative steady-state ρ_{01}^{SS} to prove that the steady-state is indeed the thermal state found in Problem 1.d.

Solution:

By taking the projection $\langle 0|\dot{\rho}|1\rangle$ we obtain :

$$\dot{\rho}_{01} = -i\hbar\omega\rho_{01} - \frac{1}{2}\alpha\rho_{01} - \frac{1}{2}(1-\alpha)\rho_{01} = -(i\hbar\omega + 1)\rho_{01}$$

Then, at the steady-state $\rho_{01} = 0$. Thus the equilibrium state (such that $\dot{\rho} = 0$) reached under the action of this Lindbladian process is indeed the thermal equilibrium.

Problem 3: Neutron interferometer

20 points

Consider a Mach-Zehnder neutron interferometer such as the one seen in class and in the problem sets. The possible states of the neutrons are described by its momentum, either $|U\rangle$ for neutrons moving upward or $|D\rangle$ for neutrons moving downward.

The interferometer components act on the neutrons passing through with the following unitary operators:

$$U_{\rm BS} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \qquad U_{\rm mirror} = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \qquad U_{\rm phase} = \begin{pmatrix} e^{i\varphi_U} & 0\\ 0 & e^{i\varphi_D} \end{pmatrix}$$

where BS stands for beam-splitter. U_{phase} represents a phase shift that neutrons acquire when passing through a material sample: the phase is φ_U for neutrons crossing the material while going upward and φ_D for neutrons going downward.

a) We send in a beam of neutrons moving upward, $|\psi_0\rangle = |U\rangle$. What is the neutron state at each step, 1-4? (see fg.)

Solution:

With simple matrix multiplications we have:

$$\begin{split} \psi_1 &= \frac{1}{\sqrt{2}} (|U\rangle + |D\rangle) \\ \psi_2 &= \frac{1}{\sqrt{2}} (e^{i\varphi_U} |U\rangle + e^{i\varphi_D} |D\rangle) \\ \psi_3 &= \frac{1}{\sqrt{2}} (e^{i\varphi_U} |D\rangle + e^{i\varphi_D} |U\rangle) \\ \psi_4 &= \frac{1}{2} [e^{i\varphi_U} (|U\rangle - |D\rangle) + e^{i\varphi_D} (|U\rangle + |D\rangle)] \end{split}$$

b) What is the measured contrast? [Hint: we define the contrast as the difference in the number of neutrons measured at the detector U and the detector D that measure neutrons moving upward and downward respectively.]

Solution:

The contrast operator is defined as $C = |U\rangle \langle U| - |D\rangle \langle D|$. We can rewrite $|\psi\rangle_4$ as

$$\begin{split} |\psi\rangle_4 &= \frac{1}{2} e^{i(\varphi_U + \varphi_D)/2} \left[e^{i(\varphi_U - \varphi_D)/2} (|U\rangle - |D\rangle) + e^{-i(\varphi_U - \varphi_D)/2} (|U\rangle + |D\rangle) \right] \\ &= e^{i(\varphi_U + \varphi_D)/2} \left[\cos\left[(\varphi_U - \varphi_D)/2 \right] |U\rangle - i \sin\left[(\varphi_U - \varphi_D)/2 \right] |D\rangle \right] \end{split}$$

From this expression, it is easy to f nd the contrast as

$$\langle C \rangle = \cos \left[(\varphi_U - \varphi_D)/2 \right]^2 - \sin \left[(\varphi_U - \varphi_D)/2 \right]^2 = \cos(\varphi_U - \varphi_D).$$

c) We now change the sample inside the interferometer so that the neutron will acquire a phase $\varphi'_U = \varphi_U - \varphi_D$ when traveling upward and $\varphi'_D = 0$ otherwise. How do your answers to questions *a*-*b* change?

Solution:

With this new sample, the state $|\psi\rangle_4$ is

$$|\psi\rangle_{4} = \frac{1}{2} [e^{i\varphi'_{U}} (|U\rangle - |D\rangle) + (|U\rangle + |D\rangle)] = \frac{1}{2} e^{i\varphi'_{U}/2} [e^{i\varphi'_{U}/2} (|U\rangle - |D\rangle) + e^{-i\varphi'_{U}/2} (|U\rangle + |D\rangle)]$$

Notice that this state is exactly the same as written above to calculate the contrast. Since a global phase $e^{i\varphi'_U/2}$ is unimportant when calculating expectation values, we find the same contrast: $\langle C \rangle = \cos(\varphi'_U) = \cos(\varphi_U - \varphi_D)$.

Problem 4: Faulty neutron interferometer

30 points

Consider the same neutron interferometer as in Problem 3.c, but now assume that the mirrors are faulty: Instead of ref ecting all the neutrons, they let pass some of them. We can describe the process as follow:

The mirrors are initially in their ground state, $|\psi\rangle_{\text{mirror}} = |0\rangle$. When one neutron traveling upward impacts the mirror, it is reflected with probability p (leaving the mirrors in the ground state) or it continues upward with probability 1 - p, leaving the mirrors in the state $|1\rangle$. When one neutron traveling downward impacts the mirror, it is reflected with probability p (leaving the mirrors in the ground state) or it continues downward with probability 1 - p, leaving the mirrors in the state $|2\rangle$.

a) Describes formally this process giving the rules for the transitions $|U\rangle|0\rangle_{mirror} \rightarrow \dots$ and $|D\rangle|0\rangle_{mirror} \rightarrow \dots$

Solution:

The possible transitions described in this process are given by the propagator U_{nm} acting on both neutron and mirror:

$$\begin{split} |U\rangle|0\rangle_{\text{mirror}} & \to U_{nm}|U\rangle|0\rangle_{\text{mirror}} = \sqrt{p}|D\rangle|0\rangle_{\text{mirror}} + \sqrt{1-p}|U\rangle|1\rangle_{\text{mirror}} \\ |D\rangle|0\rangle_{\text{mirror}} & \to U_{nm}|D\rangle|0\rangle_{\text{mirror}} = \sqrt{p}|U\rangle|0\rangle_{\text{mirror}} + \sqrt{1-p}|D\rangle|2\rangle_{\text{mirror}} \end{split}$$

b) For which values of φ'_{U} is the mirror+neutron system entangled (at the step 3)?

Solution:

Entanglement between the mirror and the neutron does not depend on φ'_U (which defines only a phase of the neutron state), but it can depend on p.

We calculated $|\psi\rangle_2 = \frac{1}{\sqrt{2}} (e^{i\varphi'_U} |U\rangle + |D\rangle)$. Considering now the mirror system as well, we have:

$$|\Psi\rangle_{2} = \frac{1}{\sqrt{2}} (e^{i\varphi'_{U}} |U\rangle|0\rangle_{\text{mirror}} + |D\rangle|0\rangle_{\text{mirror}})$$

After the interaction with the mirror, we have:

$$\begin{split} |\Psi\rangle_{3} &= \frac{1}{\sqrt{2}} [e^{i\varphi'_{U}} (\sqrt{p}|D\rangle|0\rangle_{\text{mirror}} + \sqrt{1-p}|U\rangle|1\rangle_{\text{mirror}}) + |D\rangle (\sqrt{p}|U\rangle|0\rangle_{\text{mirror}} + \sqrt{1-p}|D\rangle|2\rangle_{\text{mirror}})] \\ &= \frac{1}{\sqrt{2}} [\sqrt{p} (e^{i\varphi'_{U}}|D\rangle + |U\rangle)|0\rangle_{\text{mirror}} + \sqrt{1-p} (e^{i\varphi'_{U}}|U\rangle|1\rangle_{\text{mirror}} + |D\rangle|2\rangle_{\text{mirror}})] \end{split}$$

This state cannot be written as $|\psi\rangle_{\text{neutron}} \otimes |\varphi\rangle_{\text{mirror}}$ thus it is entangled. To conf rm this, we can take the partial trace over the mirror:

$$\rho_3 = \operatorname{Tr}_{\operatorname{mirror}} \left\{ |\Psi_3\rangle \langle \Psi_3| \right\} = p |\psi_3\rangle \langle \psi_3| + \frac{1}{2}(1-p)\mathbb{1}$$

(where $|\psi_3\rangle = (e^{i\varphi'_U}|D\rangle + |U\rangle)$ is the state found in Problem 3 for perfect mirrors.) This reduced state is a mixed state, as conf rmed by $\operatorname{Tr} \{\rho_3^2\} = [p^2 + (1-p)^2/2 + p] = \frac{1}{2}(p^2 + 1) < 1.$

Notice that in all this calculation, the value of φ'_U is unimportant and the state is always entangled (unless p = 1 or p = 0).

c) Write the Kraus operators that describe the faulty mirrors and the evolution $|\psi_2\rangle \rightarrow \rho_3$. What is ρ_3 ? What type of process is this Kraus sum describing for $p \rightarrow 0$?

Solution:

The Kraus operators are $M_k = \langle k | U_{nm} | 0 \rangle$:

$$M_0 = \sqrt{p}\sigma_x, \qquad M_1 = \sqrt{1-p}|U\rangle\langle U|, \qquad M_2 = \sqrt{1-p}|D\rangle\langle D|$$

and $\rho_3 = \sum_{k=0}^2 M_k \rho_2 M_k$, with $\rho_2 = |\psi\rangle \langle \psi|_2 =$. We obtain:

$$\rho_3 = p\sigma_x\rho_2\sigma_x + (1-p)(\langle 0|\rho_2|0\rangle|0\rangle\langle 0| + \langle 1|\rho_2|1\rangle|1\rangle\langle 1| = p|\psi_3\rangle\langle\psi_3| + \frac{1}{2}(1-p)\mathbf{1}$$

Notice that the diagonal terms of the density operator are swapped but not reduced in intensity, while the off-diagonal terms are reduced by an amount p. Thus, as the quality of the mirror decreases, $p \to 0$ and the off-diagonal terms go to zero; since the phase coherence of the state is lost, the process can be classified as a dephasing process. Notice that it is different then what seen in class, since it is combined with the σ_x operator, inverting the populations.

d) What is the contrast obtained in this faulty interferometer?

Solution:

The contrast is now given by $\langle C \rangle = \text{Tr} \{ \rho_4 C \}$, where $\rho_4 = U_{BS} \rho_3 U_{BS}^{\dagger}$. By linearity,

$$\rho_4=p|\psi_4\rangle\langle\psi_4|+\frac{1}{2}(1-p)\mathbf{1}$$

Then $\langle C \rangle = \text{Tr} \{ Cp | \psi_4 \rangle \langle \psi_4 | \} = p \cos(\varphi'_U).$

22.51 Quantum Theory of Radiation Interactions Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.