22.51 Quantum Theory of Radiation Interactions
 Mid-Term Exam

October 27, 2010
Solution

Problem 1: Electron Spin: Magnetization

20 points
Consider an isolated electron with spin $-\frac{1}{2}$, placed in a large magnetic f eld $\vec{B}=B_{z} \vec{z}$ at zero temperature. The spin is in the state

$$
|\psi\rangle=c_{0}|\uparrow\rangle+c_{1}|\downarrow\rangle
$$

where $|\uparrow\rangle \equiv\left|S_{z}=+\frac{\hbar}{2}\right\rangle\left(|\downarrow\rangle \equiv\left|S_{z}=-\frac{\hbar}{2}\right\rangle\right)$ represents the spin state aligned (anti-aligned) with the vertical z-axis. We now assume that we can measure the magnetic dipole $\vec{\mu}=\gamma \vec{S}=\gamma \hbar \frac{\vec{\sigma}}{2}$ of this single spin (with γ the gyromagnetic ratio of the electronic spin):
a) What is the probability of f nding an outcome $\mu_{z}>0$? What is the spin state immediately after the measurement?

Solution:

The eigenstates of μ_{z} are $|\uparrow\rangle$ and $|1\rangle$ with eigenvalues $\pm \gamma \frac{\hbar}{2}$. Assuming $\gamma>0$, the probability of f nding $\mu_{z}>0$ in a measurement is simply $p\left(\mu_{z}>0\right)=\left|c_{0}\right|^{2}$. The spin state is projected into the corresponding eigenstate $|\psi\rangle^{\prime}=|\uparrow\rangle$. (For $\gamma<0$ it would have been $p\left(\mu_{z}>0\right)=\left|c_{1}\right|^{2}$ and $|\psi\rangle^{\prime}=|\downarrow\rangle$)
b) What is the average magnetization $\left\langle\mu_{z}\right\rangle$ in the z direction?

Solution:

We need to calculate $\langle\psi| \mu_{z}|\psi\rangle=\left(c_{0}^{*}\langle\uparrow|+c_{1}^{*}\langle\downarrow|\right) \mu_{z}\left(c_{0}|\uparrow\rangle+c_{1}|\downarrow\rangle\right)$. Since μ_{z} is already diagonal in the basis $|\uparrow\rangle,|\downarrow\rangle$ this is simply $\left\langle\mu_{z}\right\rangle=\gamma \frac{\hbar}{2}\left(\left|c_{0}\right|^{2}-\left|c_{1}\right|^{2}\right)=\gamma \hbar\left(\left|c_{0}\right|^{2}-\frac{1}{2}\right)$.
c) If the magnetic feld is aligned with the z-axis, $\vec{B}=B_{z} \vec{z}$ and the spin is in its ground state, what are c_{0} and c_{1} ? What is now $\left\langle\mu_{z}\right\rangle$?
[Assume that the only interaction is the Zeeman interaction, $\left.\mathcal{H}_{Z}=\hbar \gamma B_{z} \sigma_{z} / 2\right]$

Solution:

The energy levels of the Zeeman interaction are simply the eigenvalues of $\mathcal{H}_{Z}, \pm \gamma B_{z} \frac{\hbar}{2}$ corresponding to the eigenvectors $|\uparrow\rangle$, $|\downarrow\rangle$. Assuming $B_{z}>0$ and $\gamma>0$ (or more generally $\gamma B_{z}>0$), the eigenvector $|\downarrow\rangle$ has thus the lowest energy. Then the state is simply $|\psi\rangle=|\downarrow\rangle$, that is $\left|c_{1}\right|=1$ (or $c_{1}=1$ up to an unimportant phase factor) and $c_{0}=0$. The average magnetization is then $\left\langle\mu_{z}\right\rangle=-\gamma \frac{\hbar}{2}$.
If $\gamma B_{z}<0$ the ground state is instead $|\uparrow\rangle$ and $\left\langle\mu_{z}\right\rangle=\gamma \frac{\hbar}{2}$.
Now assume that we cannot achieve zero temperature, but only a temperature T (as provided e.g. by liquid Nitrogen), so that the spin is at thermal equilibrium in the f eld $\vec{B}=B_{z} \vec{z}$.
d) What is the state of the spin?

Solution:

At f nite temperature, we expect to have a mixed state as given by the canonical ensemble. Thus the state is given by $\rho=e^{-\beta \mathcal{H}_{z}} / Z$, where $Z=\operatorname{Tr}\left\{e^{-\beta \mathcal{H}_{z}}\right\}$. For this simple Hamiltonian we can calculate the state explicitly:

$$
\rho=\frac{e^{-\beta \gamma B_{z} \hbar / 2}|\uparrow\rangle\langle\uparrow|+e^{\beta \gamma B_{z} \hbar / 2}|\downarrow\rangle\langle\downarrow|}{e^{-\beta \gamma B_{z} \hbar / 2}+e^{\beta \gamma B_{z} \hbar / 2}}
$$

Notice that the partition function $Z=2 \cosh \left(\beta \gamma B_{z} \hbar / 2\right)$. We can also write the state as:

$$
\rho=e^{-\beta \mathcal{H}_{z}} / Z=\left[\cosh \left(\beta \gamma B_{z} \hbar / 2\right) \mathbb{1}-\sinh \left(\beta \gamma B_{z} \hbar / 2\right) \sigma_{z}\right] / Z=\frac{1}{2}\left[\mathbb{1}-\tanh \left(\beta \gamma B_{z} \hbar / 2\right) \sigma_{z}\right]
$$

e) What is the average magnetization? How many spins would you need in order to achieve the same magnetization as in question c ?
[Hint: you can assume a temperature $T=77 \mathrm{~K}$ which corresponds to $\approx 1600 \mathrm{GHz}$ and a magnetic feld $B \approx 6$ Tesla which gives a Zeeman energy $\hbar \gamma B \approx 160 \mathrm{GHz}$.]
Solution:
For a mixed state, the expectation value of an observable is $\langle O\rangle=\operatorname{Tr}\{\rho O\}$. Thus the magnetization is $\left\langle\mu_{z}\right\rangle=$ $\operatorname{Tr}\left\{\rho \mu_{z}\right\}$ or:

$$
\begin{aligned}
\left\langle\mu_{z}\right\rangle= & \operatorname{Tr}\left\{\frac{e^{-\beta \gamma B_{z} \hbar / 2}|\uparrow\rangle\langle\uparrow|+e^{\beta \gamma B_{z} \hbar / 2}|\downarrow\rangle\langle\downarrow|}{e^{-\beta \gamma B_{z} \hbar / 2}+e^{\beta \gamma B_{z} \hbar / 2}} \frac{\gamma \hbar}{2}(|\uparrow\rangle\langle\uparrow|-|\downarrow\rangle\langle\downarrow|)\right\} \\
& =\frac{\gamma \hbar}{2} \frac{e^{-\beta \gamma B_{z} \hbar / 2}-e^{\beta \gamma B_{z} \hbar / 2}}{e^{-\beta \gamma B_{z} \hbar / 2}+e^{\beta \gamma B_{z} \hbar / 2}}=-\frac{\gamma \hbar}{2} \tanh \left(\beta \gamma B_{z} \hbar / 2\right)
\end{aligned}
$$

This result could have been found also by remembering that all average properties of a system can be found from the partition function, in particular the internal energy is $\langle E\rangle=-\frac{\partial \ln Z}{\partial \beta}$. The magnetization μ_{z} is related to the internal energy by the simple relation $\mathcal{H}_{z}=\mu_{z} B_{z}$. Then

$$
\left\langle\mu_{z}\right\rangle=-\frac{1}{B_{z}} \frac{\partial \ln Z}{\partial \beta}=-\frac{1}{B_{z} Z} \frac{\partial Z}{\partial \beta}=-\frac{\gamma \hbar B_{z}}{2} \frac{2 \sinh \left(\beta \gamma B_{z} \hbar / 2\right)}{B_{z} 2 \cosh \left(\beta \gamma B_{z} \hbar / 2\right)}=-\frac{\gamma \hbar}{2} \tanh \left(\beta \gamma B_{z} \hbar / 2\right)
$$

At the temperature given, $T \approx 77 \mathrm{~K}, 1 / \beta=k_{b} T \approx 1600 \mathrm{GHz}$. Then $\beta \gamma B_{z} \hbar / 2 \approx \frac{1}{2} \frac{160 \mathrm{GHz}}{1600 \mathrm{GHz}}=\frac{1}{20}$. To frst order $\tanh (0.05) \approx 0.05$. Then the magnetization of one spin at 77 K is $\left\langle\mu_{z}\right\rangle=-\frac{\gamma \hbar}{2} \frac{1}{20}$ and we need about 20 spins to have the same amount of magnetization as one spin at zero temperature.

Problem 2: Electronic Spin: Dynamics

30 points

We consider again an electronic spin- $1 / 2$ subjected to an external f eld B_{z} via the Zeeman interaction.
a) We consider two cases, where the initial state is either what you found in Problem 1, question c or in Problem 1, question d. The initial state is rotated by 90° by the operator $U_{y}=e^{i \pi / 4 \sigma_{y}}$, to be aligned with the x-axis and it then evolves under the Zeeman interaction.
By choosing the most eff cient "picture" (Schrödinger, Heisenberg or interaction picture), calculate $\left\langle\mu_{x}(t)\right\rangle$ for the two initial states. [Hint: i) What is $U e^{A} U^{\dagger}$ for U unitary? ii) $e^{A} B e^{-A}=B+[A, B]+\ldots \frac{1}{n!}[A,[A,[\ldots, B]]]$.]

Solution:

Since we want to calculate the evolution of an observable (and for different initial states) it is more convenient to adopt the Heisenberg picture, in which the observables are time-dependent and the states are constant.
First we calculate $\mu_{x}(t)$ in the Heisenberg picture under the action of the the Zeeman Hamiltonian \mathcal{H}_{Z}.

$$
\left.\mu_{x}(t)=U^{\dagger}(t) \mu\right) x(0) U(t)=e^{i \mathcal{H}_{z} t / \hbar}\left(\frac{\hbar \gamma}{2} \sigma_{x}\right) e^{-i \mathcal{H}_{z} t / \hbar}
$$

Now $\mathcal{H}_{Z}=\hbar \gamma B_{z} \sigma_{z} / 2$ and we can call $\omega=\gamma B_{z}$. Also remember that

$$
e^{i \omega t \sigma_{z} / 2} \sigma_{x} e^{-i \omega t \sigma_{z} / 2}=\sigma_{x} \cos (\omega t)-\sigma_{y} \sin (\omega t)
$$

This could have also been calculated from the formula above, $e^{A} B e^{-A}=B+[A, B]+\ldots \frac{1}{n!}[A,[A,[\ldots, B]]]$, with $A=i \omega t / 2 \sigma_{z}$ and $B=\sigma_{x}$ and the usual commutation relationships of the Pauli matrices. Then

$$
\mu_{z}(t)=\frac{\hbar \gamma}{2}\left(\sigma_{x} \cos (\omega t)-\sigma_{y} \sin (\omega t)\right)
$$

and $\left\langle\mu_{x}(t)\right\rangle=\frac{\hbar \gamma}{2}\left(\left\langle\sigma_{x}\right\rangle \cos (\omega t)+\sin (\omega t)\left\langle\sigma_{y}\right\rangle\right)$. We thus need to calculate $\left\langle\sigma_{x}\right\rangle$ and $\left\langle\sigma_{y}\right\rangle$ with respect to the two initial states (pure state at zero temperature and mixed state). The initial states after the rotation U_{y} are :

$$
U_{y}|\downarrow\rangle=|+\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle+|\downarrow\rangle), \quad U_{y}\left(e^{-\beta \mathcal{H}_{z}} / Z\right) U_{y}^{\dagger}=\frac{e^{\beta \hbar \gamma B_{z} \sigma_{x} / 2}}{2 \cosh \left(\beta \gamma B_{z} \hbar / 2\right)}
$$

which follows from $U e^{A} U^{\dagger}=e^{U A U^{\dagger}}$ and $U_{y} \sigma_{z} U_{y}^{\dagger}=-\sigma_{x}$. Also notice that this state can be written as:

$$
\rho_{x}=\frac{e^{\beta \hbar \gamma B_{z} \sigma_{x} / 2}}{2 \cosh \left(\beta \gamma B_{z} \hbar / 2\right)}=\frac{1}{2}\left[\mathbb{1}+\tanh \left(\beta \gamma B_{z} \hbar / 2\right) \sigma_{x}\right]
$$

From these states we can calculate $\left\langle\sigma_{x}\right\rangle=\langle+| \sigma_{x}|+\rangle=1$ and $\operatorname{Tr}\left\{\rho_{x} \sigma_{x}\right\}=\tanh \left(\beta \gamma B_{z} \hbar / 2\right)$, while $\left\langle\sigma_{y}\right\rangle=0$ for both states. Notice that these results could have been obtained even by simply noting that after rotating the states, the expectation value of σ_{x} should have been equal to the expectation value of σ_{z} (calculate in Problem 1) before the rotation.
Finally, we have $\left\langle\mu_{x}(t)\right\rangle=\frac{\gamma \hbar}{2} \cos \left(\gamma B_{z} t\right)$ for the ground state at zero temperature and $\left\langle\mu_{x}(t)\right\rangle=\frac{\gamma \hbar}{2} \tanh \left(\beta \gamma B_{z} \hbar / 2\right) \cos \left(\gamma B_{z} t\right)$ for the thermal state.
b) We now want to describe the thermalization process that gives rise to the state you found in Problem 1.d. When we raise the temperature from $T=0$ to $T \approx 77 K$, the electronic spin will undergo an evolution to reach a new thermal state under the action of the Zeeman Hamiltonian and the coupling with a reservoir. We can represent this thermalization process by the Lindblad operators $L_{1}=\sqrt{\alpha} \sigma_{-}, L_{2}=\sqrt{1-\alpha} \sigma_{+}$where $\sigma_{+}=|0\rangle\langle 1|\left(\sigma_{-}=|1\rangle\langle 0|\right)$ and $\alpha=\frac{1}{2}\left[1-\tanh \left(\beta \hbar \gamma B_{z} / 2\right)\right]$. Write out the Lindblad equation describing the total evolution of the system.

Solution:

The Lindblad equation is the differential equation:

$$
\dot{\rho}(t)=-i[\mathcal{H}, \rho(t)]+\sum_{k}\left[L_{k} \rho(t) L_{k}^{\dagger}-\frac{1}{2}\left(L_{k}^{\dagger} L_{k} \rho(t)+\rho(t) L_{k}^{\dagger} L_{k}\right)\right]
$$

In the specif c case of the problem this becomes:

$$
\dot{\rho}=-i \frac{1}{2} \hbar \omega\left[\sigma_{z}, \rho\right]+\alpha\left[\langle 1| \rho|1\rangle|0\rangle\langle 0|-\frac{1}{2}(|1\rangle\langle 1| \rho+\rho|1\rangle\langle 1|)\right]+(1-\alpha)\left[\langle 0| \rho|0\rangle|1\rangle\langle 1|-\frac{1}{2}(|0\rangle\langle 0| \rho+\rho|0\rangle\langle 0|)\right]
$$

where we used the fact that $\left(\sigma_{-}\right)^{\dagger} \sigma_{-}=(|1\rangle\langle 0|)(|0\rangle\langle 1|)=|1\rangle\langle 1|$ and $\sigma_{+}^{\dagger} \sigma_{+}=|0\rangle\langle 0|$.
c) What is ρ_{00}, where $\rho_{00}=\langle 0| \rho|0\rangle$? What is $\dot{\rho}_{11}$? Take the steady-state (SS) limit of the system of equations you found and calculate $\rho_{00}^{S S}$ and $\rho_{11}^{S S}$. Compare the result with the state you found in Problem 1.d.

Solution:

We need to project out $\langle 0| \dot{\rho}|0\rangle$:

$$
\begin{gathered}
\dot{\rho_{00}}=\langle 0|\left(-i \frac{1}{2} \hbar \omega\left[\sigma_{z}, \rho\right]\right)|0\rangle+\alpha\langle 0|\left[\rho_{11}|0\rangle\langle 0|-\frac{1}{2}(|1\rangle\langle 1| \rho+\rho|1\rangle\langle 1|)\right]|0\rangle \\
+(1-\alpha)\langle 0|\left[\rho_{00}|1\rangle\langle 1|-\frac{1}{2}(|0\rangle\langle 0| \rho+\rho|0\rangle\langle 0|)\right]|0\rangle
\end{gathered}
$$

The f rst term is zero, since $\sigma_{z}=|0\rangle\langle 0|-|1\rangle\langle 1|$ yielding $\langle 0|\left[\sigma_{z}, \rho\right]|0\rangle=\langle 0|\left(\sigma_{z} \rho-\rho \sigma_{z}\right)|0\rangle=\langle 0| \rho|0\rangle-\langle 0| \rho|0\rangle$. The second term yields $\alpha \rho_{11}$ and the third term $-(1-\alpha) \rho_{00}$. Thus we have:

$$
\dot{\rho_{00}}=\alpha \rho_{11}-(1-\alpha) \rho_{00}
$$

We can calculate $\dot{\rho}_{11}$ in a similar way, or remember that $\rho_{11}+\rho_{00}=1$ so that $\dot{\rho}_{11}=-\dot{\rho}_{00}$:

$$
\dot{\rho}_{11}=-\alpha \rho_{11}+(1-\alpha) \rho_{00}
$$

We then have the system of equations:

$$
\left\{\begin{array}{l}
\dot{\rho_{00}}=\alpha-\rho_{00} \\
\rho_{\dot{11}}=(1-\alpha)-\rho_{11}
\end{array}\right.
$$

At the steady state, $\dot{\rho}=0$ we obtain $\rho_{00}=\alpha=\frac{1}{2}\left[1-\tanh \left(\beta \hbar \gamma B_{z} / 2\right)\right]=\frac{e^{-\beta \hbar \gamma B_{z} / 2}}{2 \cosh \left(\beta \hbar \gamma B_{z} / 2\right)}$ and $\rho_{11}=\frac{1}{2}[1+$ $\left.\tanh \left(\beta \hbar \gamma B_{z} / 2\right)\right]=\frac{e^{\beta \hbar \gamma B_{z} / 2}}{2 \cosh \left(\beta \hbar \gamma B_{z} / 2\right)}$. These are the same values as for the thermal state in Problem 1. If we can prove that at the steady state $\rho_{10}=\rho_{01}^{*}=0$ then we have recovered the thermal state.
Notice that in the Exam I had written $\alpha=\frac{1}{2}\left[1-\tanh \left(\beta \hbar \gamma B_{z} / 2\right)\right]$ which would have given a result off by a factor 2
d) Now calculate as well ρ_{01} and the relative steady-state $\rho_{01}^{S S}$ to prove that the steady-state is indeed the thermal state found in Problem 1.d.

Solution:

By taking the projection $\langle 0| \dot{\rho}|1\rangle$ we obtain :

$$
\dot{\rho}_{01}=-i \hbar \omega \rho_{01}-\frac{1}{2} \alpha \rho_{01}-\frac{1}{2}(1-\alpha) \rho_{01}=-(i \hbar \omega+1) \rho_{01}
$$

Then, at the steady-state $\rho_{01}=0$. Thus the equilibrium state (such that $\dot{\rho}=0$) reached under the action of this Lindbladian process is indeed the thermal equilibrium.

Problem 3: Neutron interferometer

20 points

Consider a Mach-Zehnder neutron interferometer such as the one seen in class and in the problem sets. The possible states of the neutrons are described by its momentum, either $|U\rangle$ for neutrons moving upward or $|D\rangle$ for neutrons moving downward.

The interferometer components act on the neutrons passing through with the following unitary operators:

$$
U_{\mathrm{BS}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad U_{\text {mirror }}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad U_{\text {phase }}=\left(\begin{array}{cc}
e^{i \varphi_{U}} & 0 \\
0 & e^{i \varphi_{D}}
\end{array}\right)
$$

where BS stands for beam-splitter. $U_{\text {phase }}$ represents a phase shift that neutrons acquire when passing through a material sample: the phase is φ_{U} for neutrons crossing the material while going upward and φ_{D} for neutrons going downward.
a) We send in a beam of neutrons moving upward, $\left|\psi_{0}\right\rangle=|U\rangle$. What is the neutron state at each step, 1-4? (see fg.)

Solution:

With simple matrix multiplications we have:

$$
\begin{gathered}
\psi_{1}=\frac{1}{\sqrt{2}}(|U\rangle+|D\rangle) \\
\psi_{2}=\frac{1}{\sqrt{2}}\left(e^{i \varphi_{U}}|U\rangle+e^{i \varphi_{D}}|D\rangle\right) \\
\psi_{3}=\frac{1}{\sqrt{2}}\left(e^{i \varphi_{U}}|D\rangle+e^{i \varphi_{D}}|U\rangle\right) \\
\psi_{4}=\frac{1}{2}\left[e^{i \varphi_{U}}(|U\rangle-|D\rangle)+e^{i \varphi_{D}}(|U\rangle+|D\rangle)\right]
\end{gathered}
$$

b) What is the measured contrast? [Hint: we def ne the contrast as the difference in the number of neutrons measured at the detector U and the detector D that measure neutrons moving upward and downward respectively.]

Solution:

The contrast operator is def ned as $C=|U\rangle\langle U|-|D\rangle\langle D|$. We can rewrite $|\psi\rangle_{4}$ as

$$
\begin{aligned}
|\psi\rangle_{4} & =\frac{1}{2} e^{i\left(\varphi_{U}+\varphi_{D}\right) / 2}\left[e^{i\left(\varphi_{U}-\varphi_{D}\right) / 2}(|U\rangle-|D\rangle)+e^{-i\left(\varphi_{U}-\varphi_{D}\right) / 2}(|U\rangle+|D\rangle)\right] \\
& =e^{i\left(\varphi_{U}+\varphi_{D}\right) / 2}\left[\cos \left[\left(\varphi_{U}-\varphi_{D}\right) / 2\right]|U\rangle-i \sin \left[\left(\varphi_{U}-\varphi_{D}\right) / 2\right]|D\rangle\right]
\end{aligned}
$$

From this expression, it is easy to f nd the contrast as

$$
\langle C\rangle=\cos \left[\left(\varphi_{U}-\varphi_{D}\right) / 2\right]^{2}-\sin \left[\left(\varphi_{U}-\varphi_{D}\right) / 2\right]^{2}=\cos \left(\varphi_{U}-\varphi_{D}\right)
$$

c) We now change the sample inside the interferometer so that the neutron will acquire a phase $\varphi_{U}^{\prime}=\varphi_{U}-\varphi_{D}$ when traveling upward and $\varphi_{D}^{\prime}=0$ otherwise. How do your answers to questions a-b change?

Solution:

With this new sample, the state $|\psi\rangle_{4}$ is

$$
|\psi\rangle_{4}=\frac{1}{2}\left[e^{i \varphi_{U}^{\prime}}(|U\rangle-|D\rangle)+(|U\rangle+|D\rangle)\right]=\frac{1}{2} e^{i \varphi_{U}^{\prime} / 2}\left[e^{i \varphi_{U}^{\prime} / 2}(|U\rangle-|D\rangle)+e^{-i \varphi_{U}^{\prime} / 2}(|U\rangle+|D\rangle)\right]
$$

Notice that this state is exactly the same as written above to calculate the contrast. Since a global phase $e^{i \varphi_{U}^{\prime} / 2}$ is unimportant when calculating expectation values, we f nd the same contrast: $\langle C\rangle=\cos \left(\varphi_{U}^{\prime}\right)=\cos \left(\varphi_{U}-\varphi_{D}\right)$.

Problem 4: Faulty neutron interferometer

Consider the same neutron interferometer as in Problem 3.c, but now assume that the mirrors are faulty: Instead of ref ecting all the neutrons, they let pass some of them. We can describe the process as follow:
The mirrors are initially in their ground state, $|\psi\rangle_{\text {mirror }}=|0\rangle$. When one neutron traveling upward impacts the mirror, it is ref ected with probability p (leaving the mirrors in the ground state) or it continues upward with probability $1-p$, leaving the mirrors in the state $|1\rangle$. When one neutron traveling downward impacts the mirror, it is ref ected with probability p (leaving the mirrors in the ground state) or it continues downward with probability $1-p$, leaving the mirrors in the state $|2\rangle$.
a) Describes formally this process giving the rules for the transitions $|U\rangle|0\rangle_{\text {mirror }} \rightarrow \ldots$ and $|D\rangle|0\rangle_{\text {mirror }} \rightarrow \ldots$.

Solution:
The possible transitions described in this process are given by the propagator $U_{n m}$ acting on both neutron and mirror:

$$
\begin{aligned}
& |U\rangle|0\rangle_{\text {mirror }} \rightarrow U_{n m}|U\rangle|0\rangle_{\text {mirror }}=\sqrt{p}|D\rangle|0\rangle_{\text {mirror }}+\sqrt{1-p}|U\rangle|1\rangle_{\text {mirror }} \\
& |D\rangle|0\rangle_{\text {mirror }} \rightarrow U_{n m}|D\rangle|0\rangle_{\text {mirror }}=\sqrt{p}|U\rangle|0\rangle_{\text {mirror }}+\sqrt{1-p}|D\rangle|2\rangle_{\text {mirror }}
\end{aligned}
$$

b) For which values of φ_{U}^{\prime} is the mirror+neutron system entangled (at the step 3)?

Solution:

Entanglement between the mirror and the neutron does not depend on φ_{U}^{\prime} (which def nes only a phase of the neutron state), but it can depend on p.
We calculated $|\psi\rangle_{2}=\frac{1}{\sqrt{2}}\left(e^{i \varphi_{U}^{\prime}}|U\rangle+|D\rangle\right)$. Considering now the mirror system as well, we have:

$$
|\Psi\rangle_{2}=\frac{1}{\sqrt{2}}\left(e^{i \varphi_{U}^{\prime}}|U\rangle|0\rangle_{\text {mirror }}+|D\rangle|0\rangle_{\text {mirror }}\right)
$$

After the interaction with the mirror, we have:

$$
\begin{gathered}
|\Psi\rangle_{3}=\frac{1}{\sqrt{2}}\left[e^{i \varphi_{U}^{\prime}}\left(\sqrt{p}|D\rangle|0\rangle_{\text {mirror }}+\sqrt{1-p}|U\rangle|1\rangle_{\text {mirror }}\right)+|D\rangle\left(\sqrt{p}|U\rangle|0\rangle_{\text {mirror }}+\sqrt{1-p}|D\rangle|2\rangle_{\text {mirror }}\right)\right] \\
=\frac{1}{\sqrt{2}}\left[\sqrt{p}\left(e^{i \varphi_{U}^{\prime}}|D\rangle+|U\rangle\right)|0\rangle_{\text {mirror }}+\sqrt{1-p}\left(e^{i \varphi_{U}^{\prime}}|U\rangle|1\rangle_{\text {mirror }}+|D\rangle|2\rangle_{\text {mirror }}\right)\right]
\end{gathered}
$$

This state cannot be written as $|\psi\rangle_{\text {neutron }} \otimes|\varphi\rangle_{\text {mirror }}$ thus it is entangled. To conf rm this, we can take the partial trace over the mirror:

$$
\rho_{3}=\operatorname{Tr}_{\text {mirror }}\left\{\left|\Psi_{3}\right\rangle\left\langle\Psi_{3}\right|\right\}=p\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right|+\frac{1}{2}(1-p) \mathbb{1}
$$

(where $\left|\psi_{3}\right\rangle=\left(e^{i \varphi_{U}^{\prime}}|D\rangle+|U\rangle\right)$ is the state found in Problem 3 for perfect mirrors.) This reduced state is a mixed state, as conf rmed by $\operatorname{Tr}\left\{\rho_{3}^{2}\right\}=\left[p^{2}+(1-p)^{2} / 2+p\right]=\frac{1}{2}\left(p^{2}+1\right)<1$.
Notice that in all this calculation, the value of φ_{U}^{\prime} is unimportant and the state is always entangled (unless $p=1$ or $p=0$).
c) Write the Kraus operators that describe the faulty mirrors and the evolution $\left|\psi_{2}\right\rangle \rightarrow \rho_{3}$. What is ρ_{3} ? What type of process is this Kraus sum describing for $p \rightarrow 0$?

Solution:

The Kraus operators are $M_{k}=\langle k| U_{n m}|0\rangle$:

$$
M_{0}=\sqrt{p} \sigma_{x}, \quad M_{1}=\sqrt{1-p}|U\rangle\langle U|, \quad M_{2}=\sqrt{1-p}|D\rangle\langle D|
$$

and $\rho_{3}=\sum_{k=0}^{2} M_{k} \rho_{2} M_{k}$, with $\rho_{2}=|\psi\rangle\left\langle\left.\psi\right|_{2}=\right.$. We obtain:

$$
\rho_{3}=p \sigma_{x} \rho_{2} \sigma_{x}+(1-p)\left(\langle 0| \rho_{2}|0\rangle|0\rangle\langle 0|+\langle 1| \rho_{2}|1\rangle|1\rangle\langle 1|=p\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right|+\frac{1}{2}(1-p) \mathbb{1}\right.
$$

Notice that the diagonal terms of the density operator are swapped but not reduced in intensity, while the off-diagonal terms are reduced by an amount p. Thus, as the quality of the mirror decreases, $p \rightarrow 0$ and the off-diagonal terms go to zero; since the phase coherence of the state is lost, the process can be classif ed as a dephasing process. Notice that it is different then what seen in class, since it is combined with the σ_{x} operator, inverting the populations.
d) What is the contrast obtained in this faulty interferometer?

Solution:

The contrast is now given by $\langle C\rangle=\operatorname{Tr}\left\{\rho_{4} C\right\}$, where $\rho_{4}=U_{B S} \rho_{3} U_{B S}^{\dagger}$. By linearity,

$$
\rho_{4}=p\left|\psi_{4}\right\rangle\left\langle\psi_{4}\right|+\frac{1}{2}(1-p) \mathbb{1}
$$

Then $\langle C\rangle=\operatorname{Tr}\left\{C p\left|\psi_{4}\right\rangle\left\langle\psi_{4}\right|\right\}=p \cos \left(\varphi_{U}^{\prime}\right)$.

MIT OpenCourseWare
http://ocw.mit.edu

22.51 Quantum Theory of Radiation Interactions

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

