22.51 Quantum Theory of Radiation Interactions
 Final Exam

December 14, 2010
Name:

Problem 1: Electric Field Evolution

20 points
Consider a single mode electromagnetic field in a volume $V=L^{3}$. Calculate the evolution of the expectation value of the electric field $E=\sqrt{\frac{2 \pi \hbar \omega}{L^{3}}}\left(a+a^{\dagger}\right)$ in the following cases:
a) The state of the e.m. field is a superposition of two coherent states:

$$
\psi(0)=\left[\cos (\vartheta)|\alpha\rangle+\sin (\vartheta) e^{i \varphi}|\beta\rangle\right] / \mathcal{N}
$$

where \mathcal{N} is a coefficient to normalize the state.

Solution:

In the Heisenberg picture we can calculate the evolution of the creation and annihilation operators: $a(t)=a(0) e^{i \omega t}$. Thus we obtain:

$$
\begin{gathered}
\langle E(t)\rangle=\sqrt{\frac{2 \pi \hbar \omega}{L^{3}}}\left\langle a e^{i \omega t}+a^{\dagger} e^{-i \omega t}\right\rangle \\
\langle E(t)\rangle=\sqrt{\frac{2 \pi \hbar \omega}{L^{3}}}\left[\cos (\vartheta)^{2} \operatorname{Re}\left[\alpha e^{i \omega t}\right]+\sin (\vartheta)^{2} \operatorname{Re}\left[\beta e^{i \omega t}\right]+\sin (2 \vartheta) \operatorname{Re}\left\{e^{i \varphi}\left(\alpha\langle\beta \mid \alpha\rangle e^{i \omega t}+\beta^{*}\langle\alpha \mid \beta\rangle e^{-i \omega t}\right)\right\}\right]
\end{gathered}
$$

where $\langle\alpha \mid \beta\rangle=e^{-\left(|\alpha|^{2}+|\beta|^{2}\right) / 2+\alpha^{*} \beta}$.
b) The state of the e.m. field is a mixture of the two coherent states above:

$$
\rho(0)=\cos ^{2}(\vartheta)|\alpha\rangle\langle\alpha|+\sin ^{2}(\vartheta)|\beta\rangle\langle\beta|
$$

Solution:

Still in the Heisenberg picture we can calculate the expectation value as:

$$
\langle E\rangle=\operatorname{Tr}\{\rho(0) E(t)\}=\sqrt{\frac{2 \pi \hbar \omega}{L^{3}}} \operatorname{Tr}\left\{\rho(0)\left(a e^{i \omega t}+a^{\dagger} e^{-i \omega t}\right)\right\}
$$

We note that $\operatorname{Tr}\{a|\alpha\rangle\langle\alpha|\}=\langle\alpha| a|\alpha\rangle=\alpha$ and find:

$$
\begin{aligned}
\langle E\rangle=\operatorname{Tr}\{\rho(0) E(t)\} & =\sqrt{\frac{2 \pi \hbar \omega}{L^{3}}}\left[\cos (\vartheta)^{2}\left(\alpha e^{i \omega t}+\alpha^{*} e^{-i \omega t}\right)+\sin (\vartheta)^{2}\left(\beta e^{i \omega t}+\beta^{*} e^{-i \omega t}\right)\right] \\
& =\sqrt{\frac{2 \pi \hbar \omega}{L^{3}}}\left[\cos (\vartheta)^{2} \operatorname{Re}\left[\alpha e^{i \omega t}\right]+\sin (\vartheta)^{2} \operatorname{Re}\left[\beta e^{i \omega t}\right]\right]
\end{aligned}
$$

c) What is the average photon number in the two cases?

Solution:

We want to calculate $\left\langle a^{\dagger} a\right\rangle$ in the two cases.

In the first case, we find:

$$
\langle n\rangle=\cos (\vartheta)^{2}|\alpha|^{2}+\sin (\vartheta)^{2}|\beta|^{2}+\sin (2 \vartheta) \operatorname{Re}\left\{e^{i \varphi} \alpha \beta^{*}\langle\beta \mid \alpha\rangle\right\}
$$

while in the second case, the last term is zero:

$$
\langle n\rangle=\cos (\vartheta)^{2}|\alpha|^{2}+\sin (\vartheta)^{2}|\beta|^{2}
$$

d) Assuming for simplicity that $\alpha, \beta \in \mathbb{R}$ (are real), in what limit the two results found in a) and b) (and the two results in c) become equivalent?

Solution:

If the coherent states where orthogonal, the coherent superposition and incoherent mixture would have given the same expectation values. Their overlap is $\langle\alpha \mid \beta\rangle=e^{-\left(|\alpha|^{2}+|\beta|^{2}\right) / 2+\alpha^{*} \beta}$. For $\alpha, \beta \in \mathbb{R}$ we have $\langle\alpha \mid \beta\rangle=e^{-\left(\alpha^{2}+\beta^{2}-2 \alpha \beta\right) / 2}=$ $e^{-(\alpha-\beta)^{2}}$ which goes to zero if $|\alpha-\beta| \gg 1$.

Problem 2: Atom observed via a quantum meter

Consider the experiment performed by Brune et al. (PRL 77(24) 4887, 1996). A Rydberg atom is prepared in an equal superposition of two states (its ground $|g\rangle$ and excited state $|e\rangle$), which are separated by an energy ω.
This state is achieved e.g., by applying the operator: $U_{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$ to the atom's ground state.
The atom interacts with an e.m. field, which is initially in a coherent state $|\alpha\rangle$ with average photon number $\langle n\rangle=\alpha^{2}$ (with α real). The e.m. field is inside a cavity and thus restricted to a single mode of frequency ν. The interaction can drive a transition between the two atom levels at a rate λ, exciting the atom from the ground to the excited state, while annihilating a photon; and creating a photon, while lowering the atom from the excited to the ground state.
a) Write the Hamiltonian describing these two systems $\left(\mathcal{H}_{0}\right)$ and their interaction (V).

Solution:

or

$$
\mathcal{H}=\omega \frac{\sigma_{z}}{2}+\nu\left(a^{\dagger} a+\frac{1}{2}\right)+\lambda\left(a \sigma^{+}+a^{\dagger} \sigma^{-}\right)
$$

$$
\mathcal{H}=\omega|e\rangle\langle e|+\quad \nu\left(a^{\dagger} a+\frac{1}{2}\right)+\lambda\left(a|e\rangle\langle g|+a^{\dagger}|g\rangle\langle e|\right)
$$

b) We now take the limit where $\lambda \ll \omega, \nu$. Thus the interaction can be considered as a perturbation. Further, we have $\lambda \ll \Delta=\omega-\nu$, i.e. the system is off-resonance. Then we can simplify the Hamiltonian as:

$$
\mathcal{H} \approx \tilde{\mathcal{H}}=\mathcal{H}_{0}+\sum_{n}\left(\delta E_{g, n}|g, n\rangle\langle g, n|+\delta E_{e, n}|e, n\rangle\langle e, n|\right)
$$

where $\delta E_{g / e, n}$ are the energy shifts due to the interaction, to the first non-zero order in time-independent perturbation theory. Write an explicit expression for $\tilde{\mathcal{H}}$.

Solution:

The zeroth order correction is zero, so we need to calculate the second order correction, which gives

$$
\delta E_{g, n}^{(2)}=\frac{|\langle g, n| V| e, n-1\rangle\left.\right|^{2}}{E_{g, n}-E_{e, n-1}}=-\frac{\lambda^{2} n}{\Delta} \quad \rightarrow \quad E_{g, n} \approx \nu\left(n+\frac{1}{2}\right)-\frac{\lambda^{2} n}{\Delta}
$$

and

$$
\delta E_{e, n}^{(2)}=\frac{|\langle e, n| V| g, n+1\rangle\left.\right|^{2}}{E_{e, n}-E_{g, n+1}}=\frac{\lambda^{2}(n+1)}{\Delta} \quad \rightarrow \quad E_{e, n} \approx \omega+\nu\left(n+\frac{1}{2}\right)+\frac{\lambda^{2}(n+1)}{\Delta}
$$

c) What is the evolution of the initial state described above? Use the Hamiltonian found above to prove that the evolved state (in the interaction picture defined by \mathcal{H}_{0}) is given by $\frac{1}{\sqrt{2}}\left(\left|g, \alpha e^{-i \varphi(t)}\right\rangle+e^{i \varphi(t)}\left|e, \alpha e^{i \varphi(t)}\right\rangle\right.$.

Solution:

We write the initial state, $|\psi(0)\rangle=\frac{1}{\sqrt{2}}(|e\rangle+|g\rangle)|\alpha\rangle$ in terms of the Hamiltonian eigenstates:

$$
|\psi\rangle=\frac{e^{-|\alpha|^{2} / 2}}{\sqrt{2}} \sum_{n} \frac{\alpha^{n}}{\sqrt{n!}}(|e, n\rangle+|g, n\rangle)
$$

The evolved state is then:

$$
\begin{gathered}
|\psi(t)\rangle=\frac{e^{-|\alpha|^{2} / 2}}{\sqrt{2}} \sum_{n} \frac{\alpha^{n}}{\sqrt{n!}}\left(e^{-i(n+1) \lambda^{2} t / \Delta}|e, n\rangle+e^{i n \lambda^{2} t / \Delta}|g, n\rangle\right) \\
\left.|\psi(t)\rangle=\frac{e^{-|\alpha|^{2} / 2}}{\sqrt{2}} \sum_{n} \frac{\left(\alpha e^{-i \lambda^{2} t / \Delta}\right)^{n}}{\sqrt{n!}} e^{-i \lambda^{2} t / \Delta}|e, n\rangle+\frac{\left(\alpha e^{i \lambda^{2} t / \Delta}\right)^{n}}{\sqrt{n!}}|g, n\rangle\right) \\
|\psi(t)\rangle=\frac{1}{\sqrt{2}}\left(\left|g, \alpha e^{i \lambda^{2} t / \Delta}\right\rangle+e^{-i \lambda^{2} t / \Delta}\left|e, \alpha e^{-i \lambda^{2} t / \Delta}\right\rangle\right)
\end{gathered}
$$

d) The atom leaves the cavity after a time T, and it is then rotated back by the propagator U_{H}. What is the probability $P_{e}(T)$ of finding the atom in the excited state?
What does this probability becomes in the limit $\langle n\rangle \rightarrow \infty$? What about the limit $\langle n\rangle \rightarrow 0$?

Solution:

We set $\beta=\alpha e^{i \lambda^{2} T / \Delta}$. The state becomes:

$$
\begin{aligned}
|\psi(T)\rangle & =\frac{1}{2}\left[|g, \beta\rangle+|e, \beta\rangle+e^{i \varphi}\left|g, \beta^{*}\right\rangle-e^{i \varphi}\left|e, \beta^{*}\right\rangle\right] \\
|\psi(T)\rangle & =\frac{1}{2}\left[|g\rangle\left(|\beta\rangle+e^{i \varphi}\left|\beta^{*}\right\rangle\right)+|e\rangle\left(|\beta\rangle-e^{i \varphi}\left|\beta^{*}\right\rangle\right)\right]
\end{aligned}
$$

The probability of being in the excited state is
$P_{e}(T)=\frac{1}{4} \operatorname{Tr}\left\{\left(|\beta\rangle-e^{i \varphi}\left|\beta^{*}\right\rangle\right)\left(\left\langle\beta^{*}\right|-e^{-i \varphi}\langle\beta|\right)\right\}=\frac{1}{4}\left(\langle\beta \mid \beta\rangle+\left\langle\beta^{*} \mid \beta^{*}\right\rangle-e^{-i \varphi}\left\langle\beta \mid \beta^{*}\right\rangle-e^{i \varphi}\left\langle\beta^{*} \mid \beta\right\rangle\right)=\frac{1}{2}\left(1-\operatorname{Re}\left[e^{i \varphi}\left\langle\beta^{*} \mid \beta\right\rangle\right]\right)$
From the value of $\left\langle\beta^{*} \mid \beta\right\rangle=e^{-\alpha^{2}\left(1-e^{-2 i \varphi}\right)}$ we have $\operatorname{Re}\left[e^{i \varphi}\left\langle\beta^{*} \mid \beta\right\rangle\right]=e^{-\alpha^{2} \sin (\varphi / 2)^{2} / 2} \cos \left(\varphi+\alpha^{2} \sin \varphi\right)$.
In the limit $\langle n\rangle=\alpha^{2} \rightarrow 0$ the probability is

$$
P_{e}=\frac{1}{2}(1-\cos \varphi)=\sin ^{2}\left(\frac{\lambda^{2} T}{2 \Delta}\right)
$$

thus the atom oscillates between its ground and excited state as if performing Rabi oscillations with Rabi frequency $\Omega=\lambda^{2} / \Delta$.
In the opposite limit $\langle n\rangle=\alpha^{2} \rightarrow \infty$ the exponential term goes to zero provided that $\alpha^{2} \sin (\varphi / 2)^{2} \gg 1$. When the distance between the two states of the cavity e.m. field becomes large enough we have $P_{e}=P_{g}=\frac{1}{2}$: the reduced state of the atom (neglecting the e.m. field) decays to an incoherent (classical) mixture of the two levels.

Problem 3: Transition Rate

Consider the same system as in the previous problem: a two-level atom (with energy separation ω) interacting with a single mode e.m. field of energy ν by an interaction of strength λ. Now we consider the case where the atom is initially in the ground state, while the field is still in a coherent state with $\alpha=\sqrt{n}$. At time $t=0$ we turn on the interaction between the atom and the field.
a) To first order approximation, what is the transition rate to a state $|e, \beta\rangle$, with $\beta=\alpha e^{i \psi}$?

Solution:

Since the interaction is time-independent, we can use Fermi's Golden rule. The transition rate is given by:

$$
W=\frac{2 \pi}{\hbar}\left|V_{i f}\right|^{2} \delta\left(\omega_{f i}\right)
$$

For the system at hand, since the initial and final states of the field are not eigenstates of the Hamiltonian, we have to find the correct $\omega_{f i}$ from the perturbation V in the interaction picture. We find $\tilde{V}=\hbar \lambda\left(a \sigma^{+} e^{-i \Delta t}+a^{\dagger} \sigma^{-} e^{i \Delta t}\right)$, thus $\omega_{f i}=\omega-\nu=\Delta$, since the transition from ground to excited state will involve also the exchange of a photon of energy ν. The matrix element is given by:

$$
V_{i f}=\langle e, \beta| \hbar \lambda\left(a \sigma^{+}+a^{\dagger} \sigma^{-}\right)|g, \alpha\rangle=\langle\beta \mid \alpha\rangle \hbar \lambda \alpha
$$

With $\beta=\alpha e^{i \psi}$ we have $|\langle\beta \mid \alpha\rangle|^{2}=e^{-4 \alpha^{2} \sin (\psi / 2)^{2}}$. Thus the rate is:

$$
W=2 \pi \hbar \lambda^{2}\langle n\rangle e^{-4\langle n\rangle \sin (\psi / 2)^{2}} \delta(\Delta)
$$

b) Compare this result to what you found in problem 2. What would be the transition rate in problem 3.a if $\Delta \gg \lambda$? What would have been the probability $P_{e}(t)$ of the atom being in the excited state (problem 2.d) if the initial state were $|g, \alpha\rangle$ as in problem 3?

Solution:

If $\Delta \gg \lambda$ or more generally $\Delta \not \approx 0$ the transition rate becomes zero. This is consistent with what found in the previous problem. There, we saw that for $\Delta \gg \lambda$ the perturbation only acts as a phase shift for the atom. Thus if the initial state is $|g, \alpha\rangle$ the probability of a transition to the excited state would be zero.

Problem 4: Resonant Scattering

30 points

Consider light scattering from an atom. The system of interest is described by an atom (with eigenstates $\left|m_{k}\right\rangle$ and energies \mathcal{E}_{k}) and the e.m. radiation field.
For convenience the system is enclosed in a cavity of volume $V=L^{3}$. The interaction between the radiation field and the atom is described by the hamiltonian $\mathcal{V}=-\vec{d} \cdot \vec{E}$ in the dipole approximation, where

$$
\vec{E}=\sum_{h, \xi} \sqrt{\frac{2 \pi \omega_{h}}{V}}\left(a_{h \xi} e^{i \vec{h} \cdot \vec{R}}+a_{h \xi}^{\dagger} e^{-i \vec{h} \cdot \vec{R}}\right) \vec{\epsilon}_{h \xi}
$$

with R the position of the center of mass of the atom.
You can use the following steps to calculate the scattering cross section $d \sigma=\frac{W_{f i}}{\Phi_{\text {inc }}}$, with $\left.W_{f i}=\frac{2 \pi}{\hbar}|\langle f| T| i\right\rangle\left.\right|^{2} \rho\left(E_{f}\right)$, where T is the transition matrix and $\rho\left(E_{f}\right)$ the final density of states.
a) What is the flux of incoming photons and the density of states of the outgoing photons?

Solution:

$$
\Phi_{i n c}=c / L^{3}
$$

and

$$
\rho\left(E_{f}\right)=\left(\frac{L}{2 \pi}\right)^{3} \frac{\omega_{k}^{2}}{\hbar c^{3}} d \Omega
$$

b) What are the possible intermediate (virtual) states that we need to consider in this scattering process?

Solution:
The initial state is $\left|m_{i}, 1_{k, l \lambda}, 0_{k^{\prime}, \lambda^{\prime}}\right\rangle$ and final state $\left|m_{i}, 0_{k, l \lambda}, 1_{k^{\prime}, \lambda^{\prime}}\right\rangle$. Intermediate states are such that there is only 1-photon transition, either $\left|m_{l}, 0_{k, l \lambda}, 0_{k^{\prime}, \lambda^{\prime}}\right\rangle$ or $\left|m_{l}, 1_{k, l \lambda}, 1_{k^{\prime}, \lambda^{\prime}}\right\rangle$. Thus:

$$
\begin{aligned}
& \langle f| T|i\rangle=\sum_{l} \frac{\left\langle m_{f}, 0_{k, l \lambda}, 1_{k^{\prime}, \lambda^{\prime}}\right| \mathcal{V}\left|m_{l}, 0_{k, l \lambda}, 0_{k^{\prime}, \lambda^{\prime}}\right\rangle\left\langle m_{l}, 0_{k, l \lambda}, 0_{k^{\prime}, \lambda^{\prime}}\right| \mathcal{V}\left|m_{i}, 1_{k, l \lambda}, 0_{k^{\prime}, \lambda^{\prime}}\right\rangle}{\left(\mathcal{E}_{i}+\hbar \omega_{k}\right)-\mathcal{E}_{l}} \\
& \quad+\sum_{l} \frac{\left\langle m_{f}, 0_{k, l \lambda}, 1_{k^{\prime}, \lambda^{\prime}}\right| \mathcal{V}\left|m_{l}, 1_{k, l \lambda}, 1_{k^{\prime}, \lambda^{\prime}}\right\rangle\left\langle m_{l}, 1_{k, l \lambda}, 1_{k^{\prime}, \lambda^{\prime}}\right| \mathcal{V}\left|m_{i}, 1_{k, l \lambda}, 0_{k^{\prime}, \lambda^{\prime}}\right\rangle}{\left(\mathcal{E}_{i}+\hbar \omega_{k}\right)-\left(\mathcal{E}_{l}+\hbar \omega_{k}+\hbar \omega_{k}^{\prime}\right)}
\end{aligned}
$$

Using the explicit expression for \mathcal{V}, we have:

$$
\langle f| T|i\rangle=\frac{2 \pi}{V} \sqrt{\omega_{k} \omega_{k}^{\prime}} e^{i(k-k) \cdot R)} \sum_{l} \frac{\left(\vec{\epsilon}_{k} \cdot \vec{d}_{f l}\right)\left(\vec{\epsilon}_{k} \cdot \vec{d}_{l i}\right)}{\mathcal{E}_{i}-\mathcal{E}_{l}+\hbar \omega_{k}}+\frac{\left(\vec{\epsilon}_{k} \cdot \vec{d}_{f l}\right)\left(\vec{\epsilon}_{k}^{\prime} \cdot \vec{d}_{l i}\right)}{\mathcal{E}_{i}-\mathcal{E}_{l}-\hbar \omega_{k}^{\prime}}
$$

d) Find an expression for the differential cross section $\frac{d \sigma}{d \Omega}$ (where $d \Omega$ is the solid angle into which the photon is scattered)

Solution:

From $d \sigma=\frac{W_{f i}}{\Phi_{\text {inc }}}=\frac{2 \pi}{\hbar} \frac{|\langle f| T| i\rangle\left.\right|^{2}}{\Phi_{i n c}} \rho\left(E_{f}\right)$ we find:

$$
\frac{d \sigma}{d \Omega}=\frac{2 \pi}{\hbar} \frac{L^{3}}{c}\left(\frac{L}{2 \pi}\right)^{3} \frac{\omega_{k}^{2}}{\hbar c^{3}} \frac{4 \pi^{2} 2}{L^{6}}\left(\omega_{k} \omega_{k^{\prime}}\right)\left|\frac{\left(\vec{\epsilon}_{k^{\prime}} \cdot \vec{d}_{f l}\right)\left(\vec{\epsilon}_{k} \cdot \vec{d}_{l i}\right)}{\mathcal{E}_{i}-\mathcal{E}_{l}+\hbar \omega_{k}}+\frac{\left(\vec{\epsilon}_{k} \cdot \vec{d}_{f l}\right)\left(\vec{\epsilon}_{k^{\prime}} \cdot \vec{d}_{l i}\right)}{\mathcal{E}_{i}-\mathcal{E}_{l}-\hbar \omega_{k^{\prime}}}\right|^{2}
$$

simplifying the expression:

$$
\frac{d \sigma}{d \Omega}=\frac{\omega_{k}^{3} \omega_{k^{\prime}}}{c^{4}}\left|\frac{\left(\vec{\epsilon}_{k^{\prime}} \cdot \vec{d}_{f l}\right)\left(\vec{\epsilon}_{k} \cdot \vec{d}_{l i}\right)}{\mathcal{E}_{i}-\mathcal{E}_{l}+\hbar \omega_{k}}+\frac{\left(\vec{\epsilon}_{k} \cdot \vec{d}_{f l}\right)\left(\vec{\epsilon}_{k^{\prime}} \cdot \vec{d}_{l i}\right)}{\mathcal{E}_{i}-\mathcal{E}_{l}-\hbar \omega_{k^{\prime}}}\right|^{2}
$$

e) We now consider resonant scattering. This occurs when the incoming photon energy is almost equal to the transition energy to one intermediate level: $\omega \approx \mathcal{E}_{l}-\mathcal{E}_{i}$ (for the virtual state l with energy \mathcal{E}_{l}).
Write an expression for the cross section assuming that only the dominant term is important.
Solution:

$$
\frac{d \sigma}{d \Omega}=k k^{\prime 3}\left|\frac{\left(d_{f h} \cdot \epsilon_{k^{\prime}}\right)\left(d_{h i} \cdot \epsilon_{k}\right)}{\epsilon_{h}-\epsilon_{i}-\hbar \omega_{k}}\right|_{\hbar \omega_{k} \approx \epsilon_{h}-\epsilon_{i}}^{2}
$$

f) A more realistic expression is obtained if one assumes a finite linewidth of the atomic level, so that $\mathcal{E}_{l}-\mathcal{E}_{i}$ is replaced by $\mathcal{E}_{l}-\mathcal{E}_{i}-i \quad \Gamma / 2$. What is the resonant scattering cross section as a function of $\Delta=\left(\mathcal{E}_{l}-\mathcal{E}_{i}\right)-\hbar \omega_{k}$ and Γ ?

Solution:

$$
\frac{d \sigma}{d \Omega}=k k^{\prime 3}\left[\frac{\left|\left(d_{f h} \cdot \epsilon_{k^{\prime}}\right)\left(d_{h i} \cdot \epsilon_{k}\right)\right|^{2}}{\Delta^{2}+\hbar^{2} \Gamma^{2} / 4}\right]_{\Delta \approx 0}
$$

MIT OpenCourseWare
http://ocw.mit.edu

22.51 Quantum Theory of Radiation Interactions

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

