
22.51 Quantum Theory of Radiation Interactions 

Final Exam 

December 14, 2010 Name: . . . . . . . . . . . . . . . . . .
 

Problem 1: Electric Field Evolution 20 points 

Consider a single mode electromagnetic field in a volume V = L3. Calculate the evolution of the expectation value of 

the electric field E = 2π1ω
3 (a + a†) in the following cases: L

a) The state of the e.m

V

. field is a superposition of two coherent states: 

ψ(0) = [cos(ϑ)|α) + sin(ϑ)e iϕ|β)]/N 

where N is a coefficient to normalize the state. 

Solution: 
In the Heisenberg picture we can calculate the evolution of the creation and annihilation operators:  a(t) = a(0)eiωt. 
Thus we obtain: 

2π�ω (  E(t)) =

 

(

ae iωt + a † e −iωt
L3 

)

( )
 

2π�ω [ 2 iωt   E(t) = cos(ϑ) Re[αe ] + sin(ϑ)2Re[βeiωt] + sin(2ϑ)Re e iϕ α(β|α)e iωt + β ∗ α
L

( |β)e −iωt
3 

where (α|β) = e−(|α|2+|β|2)/2+α∗β . 

{ ( )}] 

b) The state of the e.m. field is a mixture of the two coherent states above: 

ρ(0) = cos 2(ϑ)|α)(α| + sin2(ϑ)|β)(β| 
Solution: 
Still in the Heisenberg picture we can calculate the expectation value as: 

(E) = Tr {ρ(0)E(t)} =

 

2π�ω 
Tr 
{

 ρ(0)(ae iωt + a † e −iωt)
L3 

We note that Tr 

}

{a|α)(α|} = (α|a|α) = α and find: 

2π�ω (E)   = Tr {ρ(0)E(t)} =

 

[

cos(ϑ)2 
(

αeiωt + α∗  e −iωt
)

+ sin(ϑ)2 
(

βeiωt + β ∗ e −iωt
L3 

)] 

 

2π�ω 
=

[

cos(ϑ)2Re[αeiωt] + sin(ϑ)2Re[βeiωt]
L3 

]

c) What is the average photon number in the two cases? 

Solution: 
We want to calculate a†a in the two cases. 

( )

1 



In the first case, we find: 

(n) = cos(ϑ)2|α|2 + sin(ϑ)2|β|2 + sin(2ϑ)Re 
{

e iϕαβ ∗ (β|α)

while in the second case, the last term is zero: 

}

(n) = cos(ϑ)2|α|2 + sin(ϑ)2|β|2 

d) Assuming for simplicity that α, β ∈ R (are real), in what limit the two results found in a) and b) (and the two 
results in c) become equivalent? 

Solution: 
If the coherent states where orthogonal, the coherent superposition and incoherent mixture would have given the same 
expectation values. Their overlap is ( | ) −(|α|2+|β|2α )  β = e /2+α∗β . For α, β ∈ R we have 

2 β2

α β = e−(α + −2αβ)/2 = 

e−
 (α

( | )
−β)2 which goes to zero if |α − β| ≫ 1. 

Problem 2: Atom observed via a quantum meter 35 points 

Consider the experiment performed by Brune et al. (PRL 77(24) 4887, 1996). A Rydberg atom is prepared in an equal 
superposition of two states (its ground |g) and excited state |e)), which are separated by an energy �ω. 

1 1
This state is achieved e.g., by applying the operator: U = 1

H √ 
(

to the atom’s ground state. 
2 1 −1 

The atom interacts with an e.m. field, which is initially in a coherent stat

)

e |α) with average photon number (n) = α2 

(with α real). The e.m. field is inside a cavity and thus restricted to a single mode of frequency ν. The interaction can 
drive a transition between the two atom levels at a rate λ, exciting the atom from the ground to the excited state, while 
annihilating a photon; and creating a photon, while lowering the atom from the excited to the ground state. 

a) Write the Hamiltonian describing these two systems (H0) and their interaction (V ). 

Solution: 

σz 1 H = �ω + �ν(a† a + ) + �λ(aσ+ + a †σ−)
2 2

or 
1H = �ω|e)(e| + �ν(a†a + ) + �λ(a|e)(g| + a †|g)(e|)
2

b) We now take the limit where λ ≪ ω, ν. Thus the interaction can be considered as a perturbation. Further, we 
have λ ≪ Δ = ω − ν, i.e. the system is off-resonance. Then we can simplify the Hamiltonian as: 

H ≈ H̃ = H0 +
2

(δEg,n|g, n)(g, n| + δEe,n
n

|e, n
 

)(e, n|) 

where δEg/e,n are the energy shifts due to the interaction, to the first non-zero order in time-independent perturbation 
theory. Write an explicit expression for H̃. 

Solution: 
The zeroth order correction is zero, so we need to calculate the second order correction, which gives 

|(g, n|V |e, n − 1)|2 λ2n 1 λ2
� �

δE(2) n 
g,n = = E �g,n ν(n + )

Eg,n − Ee,n
− → ≈ − 

−1 Δ 2 Δ 

and 

δE(2) 
e,n =

|(e, n|V |g, n + 1)|2 λ2
� (n + 1) 1 �λ2(n + 1) 

= E �− e,n ω + �ν(n + ) + 
Ee,n Eg,n+1 Δ 

→ ≈ 
2 Δ 

c) What is the evolution of the initial state described above? Use the Hamiltonian found above to prove that the 
evolved state (in the interaction picture defined by H0) is given by √ 1 (|g, αe−iϕ(t)) + eiϕ(t)|e, αeiϕ(t)). 

2

2 



Solution: 
We write the initial state, |ψ(0)) = √ 1 (|e) + |g))|α) in terms of the Hamiltonian eigenstates: 

2

e−|α|2/2 αn|ψ) = √ ( e, n + 
2 

2 

 

√ 
n! n

| ) |g, n))

The evolved state is then: 

e−|α|2/2 
√

2 αn 

| ) √ 
�

2 2 

ψ(t) = e −i(n+1)λ t/Δ e, n + e inλ t/Δ g, n
2 

n n! 
| ) | )

� 

  
e−|α|2/2 (αe−iλ

2
2 

t/Δ)n 
2 (αeiλ

2t/Δ)n|ψ(t)) = √ e −iλ t/Δ e, n + g, n )
2 n! n! n 

√ | ) √ | )

1 |   

ψ(t)) = √ (|g, αeiλ2 t/Δ

2
) + e −iλ

2t/Δ|e, αe−iλ2t/Δ))

d) The atom leaves the cavity after a time T , and it is then rotated back by the propagator UH . What is the probability
 
Pe(T ) of finding the atom in the excited state?
 
What does this probability becomes in the limit (n) → ∞? What about the limit (n) → 0?
 

Solution: 
We set β 

 
= eiλ

2

α T/Δ. The state becomes: 

1 |ψ(T )) =
[

|g, β) + 
2 

|e, β) + e iϕ|g, β ∗) − e iϕ|e, β ∗)

1 

]

|ψ(T )) = g e
2 

| ) |β) + e iϕ|β ∗ ) + | ) |β) − e iϕ|β ∗ )

The probability of being in the excited state 

[

is 

( ) ( )] 

1
Pe(T ) = Tr 

{(

|β) − e iϕ|β ∗)
) ( 1 1(β ∗| − e −iϕ(β|

)}

= ((β|β)+(β ∗|β ∗)−e −iϕ(β|β ∗)−e iϕ(β ∗|β)) = (1−Re[e iϕ(β ∗|β)]) 
4 4 2

From the value of ( α2

β∗|β) = e−
 (1−e− 2iϕ ) we have −  

R i 2)2e[e ϕ(β∗|β)] = e α2 sin(ϕ/ /2 cos(ϕ + α2 sinϕ). 

In the limit (n) = α2 → 0 the probability is 

1 λ2T 
Pe = (1 − cosϕ) = sin2 

2

(

2Δ 

)

thus the atom oscillates between its ground and excited state as if performing Rabi oscillations with Rabi frequency 
Ω = λ2/Δ. 

In the opposite limit (n) = α2 → ∞ the exponential term goes to zero provided that α2 sin(ϕ/2)2 ≫ 1. When the 
distance between the two states of the cavity e.m. field becomes large enough we have P = 1

e = Pg : the reduced 2
state of the atom (neglecting the e.m. field) decays to an incoherent (classical) mixture of the two levels. 

Problem 3: Transition Rate 15 points 

Consider the same system as in the previous problem: a two-level atom (with energy separation �ω) interacting with 
a single mode e.m. field of energy �ν by an interaction of strength �λ. Now we consider the case where the atom is 
initially in the ground state, while the field is still in a coherent state with α = 

√ 
n. At time t = 0 we turn on the 

interaction between the atom and the field. 

a) To first order approximation, what is the transition rate to a state |e, β), with β = αeiψ ? 

Solution: 
Since the interaction is time-independent, we can use Fermi’s Golden rule. The transition rate is given by: 

2π 
W = 

�
|Vif |2δ(ωfi) 

3 

~



For the system at hand, since the initial and final states of the field are not eigenstates of the Hamiltonian, we have 
to find the correct ωfi from the perturbation V in the interaction picture. We find Ṽ = λ(aσ+e−iΔt + i

� a†σ−e Δt), 
thus ωfi = ω − ν = Δ, since the transition from ground to excited state will involve also the exchange of a photon of 
energy ν. The matrix element is given by: 

V = (e, β| λ(aσ+ 
� + a †σ−)|g, α) = (β|α)�if λα 

With β 
 

= αeiψ we have |(β|α)|2 = e−4α2 sin(ψ/2)2 . Thus the rate is: 

W 
2 

= 2π�λ2 (n) e−4(n) sin(ψ/2) δ(Δ) 

b) Compare this result to what you found in problem 2. What would be the transition rate in problem 3.a if Δ ≫ λ? 
What would have been the probability Pe(t) of the atom being in the excited state (problem 2.d) if the initial state were 
|g, α) as in problem 3? 

Solution: 
If Δ ≫ λ or more generally Δ  ≈ 0 the transition rate becomes zero. This is consistent with what found in the previous 
problem. There, we saw that for Δ ≫ λ the perturbation only acts as a phase shift for the atom. Thus if the initial 
state is |g, α) the probability of a transition to the excited state would be zero. 

Problem 4: Resonant Scattering 30 points 

Consider light scattering from an atom. The system of interest is described by an atom (with eigenstates |mk) and 
energies Ek) and the e.m. radiation field. 
For convenience the system is enclosed in a cavity of volume V = L3. The interaction between the radiation field and 
the atom is described by the hamiltonian V E E= −d · E in the dipole approximation, where 

2 

 

2π�ωE h �
E 

�

�
ahξe

ih·R =  + a h
†
ξe 

− �h·�i R Eǫ
 

�

hξ
V

h,ξ 

with R the position of the center of mass of the atom. 

You can use the following steps to calculate the scattering cross section  W
dσ = fi , with W 2π

fi = 
1
|(f |T Φ  |i)|2ρ(Ef ),

 

where T is the transition matrix and ρ(Ef ) the final density of states. 
inc

a) What is the flux of incoming photons and the density of states of the outgoing photons? 

Solution: 

Φ = c/L3 
inc 

and 
( )3
L ω2 

k ρ(Ef ) = dΩ 
2π �c3

b) What are the possible intermediate (virtual) states that we need to consider in this scattering process? 

Solution: 
The initial state is |mi, 1k,lλ, 0k′ ,λ′ ) and final state |mi, 0k,lλ, 1k′ ,λ′ ). Intermediate states are such that there is only 
1-photon transition, either |ml, 0k,lλ, 0k′ ,λ′ ) or |ml, 1k,lλ, 1k′ ,λ′ ). Thus: 

2 (mf , 0k,lλ, 1 |( |  | k′ ,λ′ V|ml, 0k,lλ, 0) k′ ,λ′ )(ml, 0k,lλ, 0k′ ,λ′ |V|mi, 1k,lλ, 0k′ ,λ′ 

f T i = 
�

)
( l

l 
Ei + ωk) − E

2 (mf , 0k,lλ, 1k′ ,λ′ |V|ml, 1k,lλ, 1k′ ,λ′ )(ml, 1k,lλ, 1k′ ,λ′ |V|mi, 1k,lλ, 0k′ ,λ′ 

+ 
� � �

)
(Ei + ωk) (El + ωk + ω ′ )

 kl
−

4 

√

~

~

~

~

( )

~

~ ~~

~



Using the explicit expression for V , we have: 

�
V E E E E2π � � �i(k k) R) 

2 (Eǫ k
′ 

 · dfl)(Eǫk · dli) (Eǫk · dfl)(Eǫ ′ ·  dli)(f |T |i) = ωkωk
′ e − + k · 

V E  − El + �i ωk Ei − E �l − ω k
′ 

l 

d) Find an expression for the differential cross section dσ (where dΩ is the solid angle into which the photon is dΩ 
scattered) 

Solution: 
From W 2 

dσ = fi = 2π |(f T 
1

| |i)| ρ(Ef ) we find: Φinc  Φinc 

 
( )

2 
3  3 2 E E E Edσ 2π L L ωk 4π

2 2 
�

� 

� 

(Eǫk′ · dfl)(Eǫk · dli) (Eǫk · dfl)(Eǫk′ 
′ 

· dli)
= (ω ω ) + 

dΩ c k k
� 2π �c3 L6 

� 

E − E + �i  ω  Ei l − � l k − E ωk′ 

� 

� 

�

simplifying the expression: 

� 

� � 

� 

2 
dσ ω3

kωk′ 
� 

� E
k′ ·  · E E E(Eǫ dfl)(Eǫk dli) (Eǫk · dfl)(Eǫk′ · dli)

= 
� 

+ 
dΩ c4 � 

� E − El + �ωk E  − �i i El − ωk′ 
� 

� 

� 

� 

� 

e) We now consider resonant scattering. This occurs when the incoming photon energy is almost equal to the
 
transition energy to one intermediate level: �ω ≈ El − Ei (for the virtual state l with energy El).
 
Write an expression for the cross section assuming that only the dominant term is important.
 

Solution: 

d σ 3 (df
kk ′
� 

� h 
= 

· 2
ǫk′ )(dhi · ǫk)

d Ω �i ωk

� 

� 

ǫh − ǫ  −  

� 

� 

1ωk ≈ǫh−ǫi 

f) A more realistic expression is obtained if on

� 

e assumes a finite li

� 

newidth of the atomic level, so that El − Ei is 
replaced by E �l − Ei − i Γ/2. What is the resonant scattering cross section as a function of Δ = (E − �l − Ei) ωk and 
Γ? 

Solution: 

3 

� 

| 2
d σ (dfh 

= 
· ǫk′ )(dhi ǫk)

kk ′
d Ω Δ2 + �2

· |
Γ2/4 

� 

Δ≈0 

5 

~

~

~~

~~~

~

~

~~



MIT OpenCourseWare
http://ocw.mit.edu
 
 
22.51 Quantum Theory of Radiation Interactions
Fall 2012
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu



