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Abstract 

The paper presents two methods to assess the cost effectiveness of a 
steam generator pipe. The first method is a time series analysis with real 
earthquake data. The second method is a probabilistic assessment which 
leads to the evaluation of a life-time mean cost. 

1 Introduction 

When performing a seismic design of a power plant, an engineer is faced with 
the following dilemma : damping systems for pipes, vessels, steam generator 
are very costly equipment but on the other hand they enable the structure to 
withstand a larger earthquake. Therefore, selecting the minimum damping is a 
matter of careful evaluation. 

1.1 Natural frequency of the harmonic oscillator 

This dilemma can be trivially illustrated by a single oscillator connected to a 
wall by a spring and with a damping system that we will take as parametric. 

Figure 1: Harmonic oscillator 

The fundamental equation governing this system is : 

d2u du 
m = F (t) − k(u) − d( ) (1)

dt2 dt 

Here F(t) represents the force of the earthquake on the system. Actually 
the earthquake is not really a force external to the system that is applied to 
it. An earthquake is really an acceleration of the ground which was supporting 
the structure. Thus equation (1) can be rewritten assuming that the ground is 
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moving with displacement uG(t) as : 

m( 
d2u d2uG ) = −k(u − uG) − d( 

du duG ) − m
d2uG (2)

dt2 
− 

dt2 dt 
− 

dt dt2


Let’s define y(t) = u(t) − uG(t). (2) becomes the simple equation :


m
d2y 

+ d
dy 

+ ky = −m
d2uG (3)

dt2 dt dt2 

Let us define ω0 = k and 2Qω0 = d . Then the homogeneous part of (3) m m 

can be written simply as : 

d2y dy 2+ 2Qω0 + ω0 y = 0 (4)
dt2 dt 

The characteristic equation is 

r 2 + 2Qω0r + ω0
2 = 0 

For our problem, we’ll consider that ω0 is fixed whereas Q is the parameter 
(actually Q is called the quality factor and it is directly related to the damping). 

The delta of this equation is then Δ = (2Qω0)2 − 4ω0. Thus Δ = 0 when 
Q = 1 this is called critical damping, Δ > 0 if Q > 1 and Δ < 0 if Q < 1. In 
our case Q is always below 1, so Δ < 0. 

1.2 Forced excitation: earthquake 

We shall now look at the forced oscillation of this system : an earthquake will 
induce a ground acceleration term that will excite the oscillator at the frequency 
ω. 

To find the response spectrum, one usually assume that the solution y(t) is 
y(t) = Re(yejωt) 

Therefore, (4) with the forced term can be written as : 

− ω2 y + jω2Qω0y + ω0
2 y = −ω2 uG (5) 

Equation (5) leads to the following expression for the amplification: 

( ω )2 
y ω0= � (6) 

uG (1 − ( ω )2)2 + 4Q2( ω )2 
ω0 ω0 

Plotting this ratio with different values of damping on figure (2) suggests 
that for undamped systems (Q < 1) the amplification is larger if Q is smaller. 

More important, we can also plot the acceleration as a function of the accel
eration at the natural frequency : 

Fdynamic = � 
1 

(7)
Fstatic (1 − ( ω )2)2 + 4Q2( ω )2 

ω0 ω0 
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Figure 2: Amplitude amplification 

Figure 3: Amplification of the force due to the motion of the ground 
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Fdynamic Q Fstatic 

0.01 50.0 
0.02 25.0 
0.05 10.0 
0.1 5.0 
0.2 2.6 
0.5 1.2 

Table 1: Maximum dynamic amplification variations with Q 

Figure (3) is a plot for different values of Q : it is important to notice that 
for Q < 1 the force due to the acceleration of the ground is amplified in the 
system, which means that the ground acceleration is amplified near the natural 
frequency ω0 and can cause more stress than the acceleration itself. 

To be more precise, in table (1) the maximum amplifications of the earth
quake acceleration with different values of Q are given. 

What is also interesting is that the more damping we add to the system, 
the less significant is the incremental effect for the amplification (see figure (4)): 
this means that at some point adding some more damping will prove to cost 
more than it can benefit the plant. 

Figure 4: Maximum dynamic amplification 

We have thus verified with this simple model the expected conclusion : 
adding more damping to a system will reduce the amplification in the system, 
but at some point the marginal efficiency of the damping is smaller compared 
to the additional cost. 
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2 Decoupled differential equations of a system 

2.1 Lumped masses analysis method 

The harmonic oscillator approach gives interesting results for the plant, but it is 
somehow too simple to capture the complexity of the piping system in a nuclear 
plant. 

The approach broadly used in seismic analysis is the so-called ”lumped anal
ysis”. The piping system of the nuclear plant is modeled as a succession of 
harmonic oscillator with mass mi, coupled to one another by a spring and an 
absorber. Of course we have Σmi = Mtotal. And the relation between the differ
ent oscillators is given by the beam theory. The strength of this approach is that 
it enables the engineer to reduce the original continuous pipe to a succession of 
linked masses which only have one degree of freedom (horizontal displacement 
if the pipe is vertical). The fundamental principle of dynamic applied to the 
mass mi yields 

d2ui dui duG 
mi 

dt2 
= −ki,i+1(ui+1 − ui) − ki−1,i(ui−1 − ui) − ci( 

dt 
− 

dt 
) (8) 

⎞⎛As we did before, we will define yi = ui − uG the relative displacement. We ⎞ 
0 0y m . . . 1 1 

⎛ 

= 
⎜⎜⎜⎝ 

y2 
. . . 

⎟⎟⎟⎠ , M = 
⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

0 m2 0 
also define Y . . . . . ... . 

yn⎞ ⎛ mn⎞. . . 
m1 k1,1 k1,2 . . . k1,n 

m2 
. . 

⎟⎟⎟⎠ ,K = 
⎜⎜⎜⎝ 

k2,1 
. . 

k2,2 

. .

⎟⎟⎟⎠ 

k2,n 
. . 

0 0⎛ ⎜⎜⎜⎝ . 
is the matrix defined as , m = 

.. . 
kn,1 kn,2 kn,n⎛ ⎜⎜⎜⎝ 

mn . . . ⎞ 
F1


F2

. . . 

Fn 

⎟⎟⎟⎠the static response of the beam to a force F on each mass. So= 

F = KY . D is the so-called ”damping matrix” and represents the ability of the 
system to transform kinetic energy into heat and thus to dissipate some energy. 

Equation (8) can then be written as : 

MY ̈ + DẎ + KY = −müG (9) 

Equation (9) is not trivial to solve as is. But it can be reduced to a linearly 
independent system of n equations by decomposing the homogeneous equation 
in terms of harmonic solutions. 
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2.2 Modeling the pipe 

After this brief theoretical overview of the modeling method, we will in this 
section effectively model a steam generator pipe. We will afterwards study the 
effect of an earthquake on the pipe with different damping values. 

Figure 5: Modeling the pipe: two lumped masses, fixed at z=0 and z=L 

The pipe will be considered to be fixed between two walls. We will model 
the pipe as two lumped masses, each of mass Mtotal at a distance Ltotal from 2 3 
the wall. See figure (5). 

Some usual figures for the pipe’s geometry and properties are summarized 
below : 

• Pipe length: Ltotal = 3 m 

• Pipe outside diameter 21 mm, material thickness of 1.5 mm 

• Pipe composed of stainless steel grade 304: ρ = 8000 kg/m3 , E = 193 GPa 

• Pipe filled and surrounded with water at 70 MPa (ρwater = 750 kg/m3) 

Virtual mass coefficient of 1.1• 

From these properties, we can directly compute some useful information on 
the pipe. First its mass is Mtotal inside + Mw Where Mpipe == Mpipe + Mw 

moved. 
π(R2 

inside = πR2 Lρwater and Mw = CvirtualπR2 Lρwater.out−Rin
2 )Ltotalρ, Mw 

in moved out

This gives Mpipe = 2.545 kg, Mw = 0.779 kg, Mw = 1.120 kg. We end inside moved 
up having a total mass Mtotal of 4.444 kg. Thus each lumped mass will have a 
mass m = 2.222 kg. 
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Another parameter of importance is I�the moment of inertia of the pipe 
around its x-axis. It is defined as I = 

A x
2dA. In our case, using polar 

coordinates we get x = r.cosθ and dA = rdrdθ. Thus I = 
� 
0

2π � 
R

R

i

o r3cos2θdrdθ, 

I = 
� 2π 

cos2θdθ 
� Ro r3dr. So we get I = 6.739 × 10−9 m4 .

0 Ri 

2.3 Differential equation governing the beam motion 

Recalling equation (9) we have to find the matrix K. K is related to the response 
in displacements of the beam when a force F is applied at masses’ locations. 

We introduce the matrix A defined as Y = AF where Y = 
y1 and F = � � y2 

F1 . 
F2 

Given the linearity of this equation, we can study the effect of F1 alone and 
F2 alone. 

For instance F1 will induce a displacement at z = L/3 and also at z = 2L/3 
proportional to F1. 

To find this relation, one has to solve the fundamental equation of the beam 
dynamic motion. I is the moment of inertia of the pipe around the x-axis. 

∂4u Mtotal ∂
2u Σf 

∂z4 
+ 

EI ∂t2 
= − 

EI 

In our case, we are interested in static response ( ∂ = 0) and the linear forces ∂t 
f is simply F1δ(z = L/3) where δ(z = L/3) is the Dirac function. 

So the differential equation we have to solve is: 

∂4u F1δ(z = L/3)
= (10)

∂z4 EI 
Given the geometry of the pipe, there is no displacement at the boundaries, 

and there is no angular deviation as well. We have the following boundary con
ditions: 

u(z = 0) = 0 and u(z = L) = 0 
∂u (z = 0) = 0 and ∂u (z = L) = 0 � � � �∂z ∂z 

By solving equation (10) we get figure (6). So A ∗ 
F
0 
1 = 

y
y
1

2 
= 

0.0988 F1 
EI


0.0679 F1

EI 

Given the symmetry of the system we can predict that similar results will 
be found for F2. Thus putting all the results together we get A. 

1 0.0988 0.0679 
A = 

EI 0.0679 0.0988 
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Figure 6: Displacement response of the pipe at force F1 

It is important to note that A is symmetric, thus A−1 is defined. The way 
A is defined it is clear that K = A−1 . � � 

K = EI 
19.1806 
−13.1818 

−13.1818 
19.1806 

(11) 
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2.4 Natural frequencies of the undamped system 

The fundamental equation of the undamped system with no excitation is the 
following : 

MY ̈ + KY = 0 (12) 

To obtain the natural frequencies, 

eωt y1 . Equation (12) becomes 
y2 

−ω2My + Ky = 0 

In order to have a non trivial solution (i.e. y = 0)� ω shall verify: 

Det(−ω2M + K) = 0 (13) 

Solving (13) we get 

we will solve equation (12) for Y = 

ω1 = 59.3 rad/s or f1 = 9.4 Hz 
ω2 = 137.6 rad/s or f2 = 21.9 Hz 

Corresponding to these values, we get the Y1 and Y2 vector solutions. ⎧ ⎪⎪⎨ Y1 = √1
2 

1 
1 
1 
−1 

This two modes represents the two fundamentals oscillation modes of the 

⎪⎪⎩ Y2 = √1
2 

beam, and can be represented on figure (7) 

Figure 7: Fundamental modes of the beam: for ω1 in blue, for ω2 in red. 

10 



� � 

� � � � 

� � 

� 

� � 

2.5 Uncoupled differential equation 

Now that we have the two fundamental modes of the beam, we will rewrite our 
initial problem in this coordinate system. To do so, we define the modal matrix 
associated with this base : � � � � 1 1 

P = Y1 Y2 = √1
2 1 −1 

The new coordinate vector X is such that Y = PX. We also have a critical 
damping matrix Dcr. So the fundamental equation MY ̈+DcrẎ +KY = −müG 

can be rewritten as 

P tMP X ¨ + P tDcrPẊ + P tKPX = −P t müG (14) 

We find that P tMP = M . We define a new critical damping matrix 

D� = P tDcrP as: cr = 
d
0 
1
�

d
0 
�
2 

. Computing K � = P tKP we get cr D�

0.7802 0 3.1424 
K � = 104 . We also have m� = P tm = 0 4.2091 0


So equation (14) becomes simply


MX ¨ + D� Ẋ + K �X = −m�üGcr 

And if we take X = 
x1 , then we can write the new set of equation as 
x2 

the uncoupled following system of equations: 

mẍ1 + d� ẋ1 + 7.80 × 103 = −3.14 ¨

mẍ2 + d

1 
� ẋ2 + 4.21 × 104

x
x

1

2 = 0 
uG (15)


2 

We now need to get values for d�1 and d�2. We can find the critical damping 
values, and then express the total damping of the system as a fraction of the 
critical damping. By definition of the critical damping of a single harmonic oscil
lator we get d�cr,1 = 

√
4m7.80 × 103 ≈ 263.3 kg/s and d�cr,2 = 

√
4m4.21 × 104 ≈

263.3 kg/s. 

263.3 0 
D� = cr 0 611.6 

3 Earthquake data 

The next step is to use our model and to compute the displacement when the 
pipe is subject to an earthquake. To do this, we will use data obtained from 
real earthquake (taken from [1]) and apply it to our model. 

3.1 Hector mine, Joshua tree earthquake, CA 

This earthquake occurred on October 16, 1999 in California. The data come 
from the online data-base COSMOS Strong Motion Program. The seismograph 
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was located at 48.4 km from the epicenter (vertical projection of the focus), and 
the earthquake was rated 7.1 on the Richter scale (which goes up to 9.0). 

Figure 8: Joshua tree: earthquake location 

The data consists of a list of 3000 acceleration recorded during 60 seconds 
(i.e. one record every 0.02 s). 

Also of interest is the Fourier spectrum of this signal. The acquisition fre
quency is 0.

1
02 = 50 Hz. The Power Spectral Distribution (or Fourier Spectrum) 

is defined as |F 
2
(f
π 
)|2 

where F (f) is the fourier transform of the ground acceler
ation. 
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Figure 9: Est-West acceleration of the ground during Hector Mine’s Earthquake 

Figure 10: Fourier spectrum of the Hector Mine’s seismograph 
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3.2 New Hampshire’s 1982 earthquake 

This earthquake occurred on January 19, 1982 in New Hampshire. It was rated 
4.5 on the Richter scale, so it was much more modest than the precedent one, 
but every cannot be sitting right on the San Anrea’s Fault zone! The accelero
graph we will use was recorded at Franklin Falls Dam, NH at 10.8 km from the 
epicenter (note that the data were acquired much closer to the epicenter). 

Figure 11: Est-West acceleration of the ground during NH’s Earthquake 

Even though the earthquake had some large acceleration peaks, its dura
tion (about 20 seconds) is much shorter than the previous earthquake. The 
acquisition frequency is 200 Hz. 
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Figure 12: Fourier spectrum of New Hampshire 1982 earthquake’s seismograph 

4 Response of the pipe to an earthquake 

Now that we both have the uncoupled equation and some sample of ground 
motion we can solve (15) with the data of the two different earthquakes and 
study the evolution of the displacement of the lumped masses and the force on 
the support caused by the ground motion as a function of the damping. 

4.1 Methodology 

For each earthquake we will proceed as follow: 

•	 Pick a damping value (α percent of critical damping) 

•	 Solve the uncoupled differential equation using a step-by-step algorithm 
(we only know üG at discreet times) : MatLab’s ode45 solver is used 

•	 Compute the maximum displacement of the lumped masses 

•	 Deduce the forces applied on the support for that particular α


Increment α and start over...
• 

This will give us a curve of amplification versus damping ratio. 
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4.2 Calculations for the Joshua Tree’s earthquake 

4.2.1 α = 0.01 

First of all we note that the second equation of equation set (15) is an unexcited 
harmonic oscillator. If we assume that the pipe was originally at rest (initial 
displacement and velocity are zero) then x2(t) = 0 all along the earthquake. 
This means that y1(t) = y2(t). The only variable of interest is x1(t). 

A MatLab solve of this problem gives the following solution for x1(t). 

Figure 13: x1 as a function of t for α = 0.01 

We also get the maximum value of x1(t∗) = 1.3513 × 10−3 cm. We can 
also compute the value of the maximum acceleration of the lumped mass. The 
maximum acceleration is 65.2882 × 10−3 cm/s2 and the maximum velocity is 
285.28 × 10−3 cm/s. 

We can formulate our answer with the maximum displacement vector Xmax 

1.3513
as: Xmax = 0 

× 10−3 cm 

0.9555
Then Y = PX so Ymax = PXmax. We find Ymax = 0.9555 

× 10−3 cm. 

We also recall that F = KY , so Fmax = KYmax and therefore Fmax = 
263.66 
263.66 

N . 

Now given the symmetry of the problem, it is clear that the force on the 
supports are the same. In addition we have just proved that F1 = F2 so by a 
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trivial force balance on the pipe we get that Fsupport = 263.66 N . 

4.2.2 Summary of the results 

If we apply the same reasoning and calculations for different values of the damp
ing ratio α we get the results summarized in table 

α ymax × 103 in cm Fmax in N Amplification ratio Fmax 
M ax(M üG) 

0.01 0.9555 263.66 3.000 
0.02 0.9032 249.24 2.284 
0.03 0.8920 246.13 1.904 
0.04 0.8872 244.82 1.616 
0.05 0.8861 244.53 1.437 
0.06 0.8847 244.12 1.247 
0.07 0.8857 244.40 1.161 
0.08 0.8926 246.30 1.070 
0.09 0.8971 247.55 1.016 
0.10 0.9022 248.94 0.980 
0.20 0.9043 249.53 0.740 
0.50 0.8177 225.65 0.536 
1.00 0.7956 219.53 0.432 

Table 2: results for Joshua Tree’s earthquake 

This results can be summarized on a plot: 
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Figure 14: Variation of the force damping with damping ratio 

4.3 Calculations for the New Hampshire’s earthquake 
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α ymax × 103 in cm Fmax in N Amplification ratio Fmax 
M ax(M üG) 

0.01 1.2641 348.81 1.680 
0.02 1.1089 305.99 1.475 
0.03 1.0134 279.64 1.264 
0.04 0.9909 273.43 1.196 
0.05 0.9703 267.74 1.104 
0.06 0.9179 253.28 1.100 
0.07 0.9190 253.58 0.994 
0.08 0.8908 245.80 0.960 
0.09 0.8611 237.62 0.927 
0.10 0.8368 230.91 0.971 
0.20 0.6889 190.08 0.874 
0.50 0.5876 162.14 0.524 
1.00 0.5713 157.63 0.340 

Table 3: Results for NH’s earthquake 

Figure 15: Variation of the force damping with damping ratio 
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4.4 Interpreting the results 

The general idea here is to be able to determine the force that applies on the 
support during an earthquake. From the results and the sketches showed before 
one concludes that apart from a puzzling rise around 0.07 % for the Joshua-
Tree earthquake, the amplification of the ground motion is decreasing with the 
damping ratio. 

We also note that even though the Joshua Tree earthquake was much stronger 
in terms of magnitude than the earthquake in New Hampshire, the effects are 
relatively close. See figure 16 for a plot. 

Figure 16: Maximum amplifications on the support for the two earthquakes 

We can make the following comments on the results: 

•	 The two earthquake have the same order of effect on the support even 
though the Joshua Tree Earthquake is a 7.1 Richter’s scale earthquake 
whereas the NH’s one is only 4.5. But actually they were recorded at 
different distance from the epicenter and on different types of rock. The 
NH was recorded at 10.8 km, whereas the Joshua Tree at a distance of 48.4 
km from the epicenter. If we consider that the seismic wave propagate 
only at the surface, than the effect of the seismic wave are divided by 
( 48.4 )2 ≈ 20!10.8 

•	 The NH has a much larger dependance in damping ratio than the Joshua 
Tree. This can be explained by looking at the Fourier spectrum on figures 
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10 and 12 (One should not pay attention to the absolute values of the coef
ficients which have not been normalized). We can see that the NH spectra 
has most of its components around the first natural frequency. Recalling 
the simple HO on figure 4 we see that around the natural frequency the 
amplification is very sensitive to the damping ratio. On the other hand, 
the Joshua Tree spectra is mostly located well below the natural frequency, 
where the amplification is less sensitive to the damping. 

4.5 Conclusions and comments 

One can draw the following conclusion from the results obtained: 

•	 This kind of calculation enables the engineer to choose the right parameter 
in order to avoid failure of the component over the life time of the plant. 
Given the fact that we do not have data of the cost of damping, it is not 
possible to go further and to assess the cost of the damping necessary to 
meet the design criteria. 

•	 The choice of the appropriate damping ratio is really dependant on the 
site where the plant is to sit. 

•	 This calculation does not introduce any probabilistic concepts, and is thus 
conservative in the sense that a relatively larger than expected earthquake 
has to be assumed in order to have a security margin 

The following probabilistic model, still theoretical and hard to apply, intro
duces the concepts of probability of failure, cost of failure etc. which can allow 
a more coherent and reliable cost-effectiveness assessment. 

5 Overview of cost-effectiveness design method 

The lack of data, and also the lack of calculation power leads us to switch here 
from a numerical case of a modeled pipe with real earthquake pipe to a more 
theoretical approach where the purpose is to capture the cost of the deterioration 
of the pipe as a function of the damping ratio, and to find the best value of the 
damping ratio that would come from a cost-benefit analysis. 

This concept of cost-effectiveness design of a nuclear device is a new field of 
research. I am presenting here some results from some recent articles ([2] and 
[3]). 

5.1 Evaluating the probability of occurrence of failure 

The first step is to get an idea of the probability at which the component that 
we are studying (the pipe), will fail if an earthquake occurs. 
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Defining the component failure In our case the failure means breaking the 
pipe. Most of the stresses are concentrated at the edge of the pipe (where the 
junction is). At this place, the moment shall not exceed a critical moment Mlim 

that is computed given the properties of the material. The condition of failure 
is thus: 

M(z = 0) orM(z = L) ≥ Mlim (16) 

Power Density Spectrum The power density is defined as 
|F (ω)|2 

2π 
It represents the content in power of the signal (i.e. the accelerograph) with 

the frequency. From this PSD, one can easily determine the response spectra 
by making a point by point calculation. 

Probability of failure knowing an earthquake occurred The next step 
is to determine, by using the appropriate PSD (and that is where I start to 
lack some data), what is the probability that the ground motion will cause our 
component to enter condition (16) (i.e. to fail). In [2], the authors assume 
that üG is a zero-mean stationary Gaussian process. SM (ω) is defined as the 
PSD of the bending moment in the support. It can be obtained by using the 
transfer vector function of the moment hM (ω) that transform the acceleration 
of the ground into the moments on the supports (this function is easy to find 
using the differential equation governing the motion of the beam). We finally 
get SM (ω) = |hM (ω)|2Sg (ω). As long as the ground acceleration has zero-mean, 
than the moment is a Gaussian with zero-mean, and thus its standard deviation 
is σ2 = 

� +∞ 
SM (ω)dω.M −∞

What is of interest for us is to determine at which rate the moment will cross 
Mlim. To obtain this value the authors are using the Rice Formula to compute 
the cross rate. A classical result for a Gaussian process is the following: 

M2 

νM =
1 σṀ 

exp(− lim ) (17)
2σ22π σM M 

Where νM is the crossing rate of M with Mlim and σṀ is the time rate of 
the standard deviation σM . 

σṀ = 
∞ 

ω2SM (ω)dω 
−∞ 

The bottom line of this calculation is that νM is a quantity that is relatively 
easy to calculate when one has the PSD. 

From the crossing rate, we can assume that the failure event follows a Poisson 
distribution. This assumption is very common in hazard events modeling. Thus, 
if we assume that an earthquake had occurred, then the probability that we have 
r failure during t seconds of an earthquake is: 
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PfM (Xt =r) =
(νM t)r 

exp(−νM t) (18) 
r! 

With this distribution, we verify that E(Xt) = νM t which is what we had 
expected. 

Now, we know that one failure is enough to fail the component, so the 
probability of failure is 1 minus the probability of no failure over t i.e. 

PfM |eq = 1 − e−νM t (19) 

This probability is evaluated assuming a typical value of 6 to 7 seconds for 
t (strong motion duration time). One should note here that this probability is 
a function of the damping ratio α through SM . 

Expected life-cycle cost The notion of expected life-cycle cost is at the very 
heart of the cost-effectiveness analysis of our component. The occurrence of an 
earthquake is satisfyingly modeled by a Poisson distribution where the mean 
value of the random variable ν describes the average rate of occurrence of an 
earthquake. Then the mean of the real cost over the life time of the plant, or 
the expected life-cycle cost E[C(α)] is defined as 

ν 
E[C(α)] = Cαα + Cf Pf (α) (1 − exp(−λtlife)) (20) 

λ 
Where tlife is the total life-length of the plant, λ is the annual discount rate, 

Cα the marginal cost of α and Cf the cost of failure. 

Conclusions on the model This very simple model enables to get a simple 
formula of the expected cost that can then be maximized in order to minimize 
the expected cost of the pipe. Nevertheless, data such as PSD, and even Cα or 
Cf are very hard to obtain and cannot be estimated by a back-of-the-envelope 
calculation. 

Conclusion 

As we have seen, some methods exist to assess the cost-effectiveness of nuclear 
device system. The major method is a probabilistic method, but it is still a field 
of research and is not yet applicable in the Nuclear Industry. 

My feeling about this, is that the model is very interesting for minor com
ponents of the nuclear plant where a failure can be tolerated. But when dealing 
with major components, components that are responsible for the safety of the 
plant, I think it will be difficult if not impossible to convince the utility man
agers to go for probabilistic cost-effectiveness design. And in this case, the old 
dynamic analysis of the piping system with significant margin is still the major 
option. 
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