### 2.314/1.56/2.084/13.14 Fall 2006

## Problem Set IX Solution

## Solution:

The pipe can be modeled as in Figure 1.


Pipe


Beam with the same support

Geometry and properties:
$\mathrm{L}=3 \mathrm{~m}, \mathrm{R}=0.105 \mathrm{~m}$ and $\mathrm{t}=0.007 \mathrm{~m}$
$\mathrm{E}=200 \mathrm{GPa}, \rho=8500 \mathrm{~kg} / \mathrm{m}^{3}$ and $\rho_{\text {water }}=750 \mathrm{~kg} / \mathrm{m}^{3}$

$$
m_{A}=m_{B}=\frac{\pi\left(R^{2}-R_{i}^{2}\right) L \rho+\left(\pi R_{i}^{2}+1.1 \pi R^{2}\right) L \rho_{\text {water }}}{2}=133.724 \mathrm{Kg}
$$

The governing motion eqution for dynamic response of this pipe can be expressed as: $[M]\{\ddot{u}\}+[D]\{\dot{u}\}+[K]\{u\}=\{F\}$
where:
[M]=mass matrix, $M=\left[\begin{array}{cc}m_{A} & 0 \\ 0 & m_{B}\end{array}\right]$
[D]=damping matrix
[K]=stiffness matrix
$[\mathrm{F}]=$ vector of loads, earthquake load in our case, $\{F\}=[M] \cdot\left\{S_{a}\right\}$
$\{u\}=v e c t o r$ of nodal displacements
First of all, we should calculate the stiffnes matrix of the pipe using beam theory: Suppose the displacements of point $A(L / 3)$ and $B(2 L / 3)$ are $u_{A}$ and $u_{B}$, respectively. Assuming that there is only a force $\mathrm{P}_{\mathrm{A}}$ acting on point A (at $\mathrm{L} / 3$ ), we can calculate the corresponding displacements of points A and B, satisfying the boundary conditions:
$u(0)=0$
$u(L)=u(3)=0$
$\theta_{y}(0)=\left.\frac{d u(z)}{d z}\right|_{z=0}=0$
For $L>z>L / 3$ :
$M_{y}=V_{x}(3-z)=-\frac{d M_{y}}{d z}(3-z)$
Solving this equation with the boundary condition $M_{y}(L)=0$, we get
$M_{y}=C_{1}(3-z)$
For $z<L / 3$ :
$M_{y}=2 P_{A}+V_{x}(3-z)=2 P_{A}-\frac{d M_{y}}{d z}(3-z)$
Solving this equation:
$M_{y}=C_{2}(3-z)+2 P_{A}$
Because of continuity at $z=L / 3$, we have
$C_{1}=C_{2}+P_{A}$
Meanwhile,
$M_{y}=-\int_{A} \sigma_{z} x d A=-\int_{A} E \varepsilon_{z} x d A=E K_{y} \int_{A} x^{2} d A=E K_{y} I$, where $K_{y}=\frac{d \theta}{d z}=\frac{d^{2} u}{d z^{2}}$
where $I=\int_{A} x^{2} d A=2 \int_{0}^{\pi} \cos ^{2} \theta d \theta \int_{0.098}^{0.105} r^{3} d r=2.3023 \times 10^{-5}$
So that

$$
\begin{aligned}
& K_{y}=\frac{M_{y}}{E I}=\left\{\begin{array}{c}
\frac{C_{1}}{E I}(3-z), 1<z<3 \\
\frac{C_{2}}{E I}(3-z)+\frac{2 P_{A}}{E I}, 0<z<1
\end{array}\right. \\
& \theta_{y}=\int K_{y} d z=\left\{\begin{array}{l}
-\frac{C_{1}}{E I} \frac{(3-z)^{2}}{2}+\frac{9 C_{2}}{2 E I}+\frac{4 P_{A}}{E I} \\
-\frac{C_{2}}{E I} \frac{(3-z)^{2}}{2}+\frac{2 P_{A}}{E I} z+\frac{9 C_{2}}{2 E I}
\end{array} \text { at } \mathrm{z}=0, \theta_{\mathrm{y}}=0\right. \\
& u(z)=\int \theta_{y} d z=\left\{\begin{array}{c}
\frac{C_{1}}{E I} \frac{(3-z)^{3}}{6}+\left[\frac{9 C_{2}}{2 E I}+\frac{4 P_{A}}{E I}\right] z-\frac{13 P_{A}}{3 E I}-\frac{9 C_{2}}{2 E I} \\
\frac{C_{2}}{E I} \frac{(3-z)^{3}}{6}+\frac{P_{A}}{E I} z^{2}+\frac{9 C_{2}}{2 E I} z-\frac{9 C_{2}}{2 E I}
\end{array}\right.
\end{aligned}
$$

At last, we have another boundary condtion, $u(L)=0$
So that
$3\left[\frac{9 C_{2}}{2 E I}+\frac{4 P_{A}}{E I}\right]-\frac{13 P_{A}}{3 E I}-\frac{9 C_{2}}{2 E I}=0$
$C_{2}=-\frac{23}{27} P_{A}$
$C_{1}=C_{2}+P_{A}=\frac{4}{27} P_{A}$
Then, we obtain
$\left[\begin{array}{l}u_{A} \\ u_{B}\end{array}\right]=\left[\begin{array}{c}\frac{C_{2}}{E I} \frac{8}{6}+\frac{P_{A}}{E I}+\frac{9 C_{2}}{2 E I}-\frac{9 C_{2}}{2 E I} \\ \frac{C_{1}}{E I} \frac{1}{6}+\frac{9 C_{2}}{E I}+\frac{8 P_{A}}{E I}-\frac{13 P_{A}}{3 E I}-\frac{9 C_{2}}{2 E I}\end{array}\right]=\left[\begin{array}{l}-0.1358 \frac{P_{A}}{E I} \\ -0.142 \frac{P_{A}}{E I}\end{array}\right]$
Similarly, assuming that there is only a force $\mathrm{P}_{\mathrm{B}}$ acting on point B (at $2 L / 3$ ), we can calculate the corresponding displacements of points A and B , satisfying the boundary conditions:
For $L>z>2 L / 3$ :
$M_{y}=V_{x}(3-z)=-\frac{d M_{y}}{d z}(3-z)$
Solving this equation with the boundary condition $M_{y}(L)=0$, we get
$M_{y}=C_{1}(3-z)$
For $z<2 L / 3$ :
$M_{y}=P_{B}+V_{x}(3-z)=P_{B}-\frac{d M_{y}}{d z}(3-z)$
Solving this equation:
$M_{y}=C_{2}(3-z)+P_{B}$
Because of continuity at $z=2 L / 3$, we have
$C_{1}=C_{2}+P_{B}$
Meanwhile,
$M_{y}=-\int_{A} \sigma_{z} x d A=-\int_{A} E \varepsilon_{z} x d A=E K_{y} \int_{A} x^{2} d A=E K_{y} I$, where $K_{y}=\frac{d \theta}{d z}=\frac{d^{2} u}{d z^{2}}$
where $I=\int_{A} x^{2} d A=2 \int_{0}^{\pi} \cos ^{2} \theta d \theta \int_{0.098}^{0.105} r^{3} d r=2.3023 \times 10^{-5}$
So that
$K_{y}=\frac{M_{y}}{E I}=\left\{\begin{array}{c}\frac{C_{1}}{E I}(3-z), 2<z<3 \\ \frac{C_{2}}{E I}(3-z)+\frac{P_{B}}{E I}, z<2\end{array}\right.$
$\theta_{y}=\int K_{y} d z=\left\{\begin{array}{l}-\frac{C_{1}}{E I} \frac{(3-z)^{2}}{2}+\frac{9 C_{2}}{2 E I}+\frac{5 P_{B}}{2 E I} \\ -\frac{C_{2}}{E I} \frac{(3-z)^{2}}{2}+\frac{P_{B}}{E I} z+\frac{9 C_{2}}{2 E I}\end{array}\right.$ at $\mathrm{z}=0, \theta_{\mathrm{y}}=0$
$u(z)=\int \theta_{y} d z=\left\{\begin{array}{c}\frac{C_{1}}{E I} \frac{(3-z)^{3}}{6}+\left[\frac{9 C_{2}}{2 E I}+\frac{5 P_{B}}{2 E I}\right] z-\frac{9 C_{2}}{2 E I}-\frac{19 P_{B}}{6 E I} \\ \frac{C_{2}}{E I} \frac{(3-z)^{3}}{6}+\frac{P_{B}}{2 E I} z^{2}+\frac{9 C_{2}}{2 E I} z-\frac{9 C_{2}}{2 E I}\end{array}\right.$
At last, we have another boundary condtion, $u(L)=0$
So that
$3\left[\frac{9 C_{2}}{2 E I}+\frac{5 P_{B}}{2 E I}\right]-\frac{9 C_{2}}{2 E I}-\frac{19 P_{B}}{6 E I}=0$
$C_{2}=-\frac{13}{27} P_{B}$
$C_{1}=C_{2}+P_{B}=\frac{14}{27} P_{B}$
Then, we obtain
$\left[\begin{array}{l}u_{A} \\ u_{B}\end{array}\right]=\left[\begin{array}{c}\frac{C_{2}}{E I} \frac{8}{6}+\frac{P_{B}}{2 E I}+\frac{9 C_{2}}{2 E I}-\frac{9 C_{2}}{2 E I} \\ \frac{C_{1}}{E I} \frac{1}{6}+\frac{9 C_{2}}{E I}+\frac{5 P_{B}}{E I}-\frac{9 C_{2}}{2 E I}-\frac{19 P_{B}}{6 E I}\end{array}\right]=\left[\begin{array}{l}-0.142 \frac{P_{B}}{E I} \\ -0.247 \frac{P_{B}}{E I}\end{array}\right]$
So that, according to superposition when $\mathrm{P}_{\mathrm{A}}$ and $\mathrm{P}_{\mathrm{B}}$ act on the system simultaneously, $\left[\begin{array}{l}u_{A} \\ u_{B}\end{array}\right]=\frac{1}{E I}\left[\begin{array}{cc}-0.1358 & -0.142 \\ -0.142 & -0.247\end{array}\right]\left[\begin{array}{l}P_{A} \\ P_{B}\end{array}\right]$
In the meantime,

$$
\left[\begin{array}{l}
P_{A} \\
P_{B}
\end{array}\right]=K\left[\begin{array}{l}
u_{A} \\
u_{B}
\end{array}\right]
$$

We can get

$$
K=E I\left[\begin{array}{cc}
0.1358 & 0.142 \\
0.142 & 0.247
\end{array}\right]^{-1}=E I\left[\begin{array}{ll}
18.46232 & -10.614 \\
-10.614 & 10.15054
\end{array}\right]=4.6046 \times 10^{6}\left[\begin{array}{cc}
18.46232 & -10.614 \\
-10.614 & 10.15054
\end{array}\right]
$$

Secondly, we should compute the damping matrix:
The damping matrix has only two non-zero elements, located on the diagonal. These elements are equal and give two percent critical damping for vibration at the system fundmental frequency.
Thus, we should calculate the undamped fundmental frequency first.
$[M]\{\ddot{u}\}+[K]\{u\}=0$
$\left[\begin{array}{cc}133.724 & 0 \\ 0 & 133.724\end{array}\right]\left[\begin{array}{l}\ddot{u}_{A} \\ \ddot{u}_{B}\end{array}\right]+E I\left[\begin{array}{cc}18.46232 & -10.614 \\ -10.614 & 10.15054\end{array}\right]\left[\begin{array}{l}u_{A} \\ u_{B}\end{array}\right]=0$
Solving this equation by assuming $u_{A}=A e^{\omega t}$ and $u_{B}=B e^{\omega t}$, we get

$$
\left[\begin{array}{cc}
133.724 \omega^{2}+18.46232 E I & -10.614 E I \\
-10.614 E I & 133.724 \omega^{2}+10.15054 E I
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=0
$$

$\left(133.724 \omega^{2}+18.46232 E I\right)\left(133.724 \omega^{2}+10.15054 E I\right)-112.657(E I)^{2}=0$
$17882.1 \omega^{4}+3826.226 E I \omega^{2}+74.7455(E I)^{2}=0$
$\omega^{2}=-1.00126 \times 10^{5}$ or $-8.851 \times 10^{5}$
Then, the fundamental undamped frequencys are $\omega_{1}=940.8, \omega_{2}=316.43$ in radius $/ \mathrm{s}$; note that $\omega=2 \pi f$
and corresponding eigenvectors are
$u_{1}=\left[\begin{array}{c}0.826 \\ -0.56364\end{array}\right], u_{2}=\left[\begin{array}{c}0.56364 \\ 0.826\end{array}\right]$

Then, we should also calculate the critical damping matrix,
Suppose that the critical damping of lumped mass is considered seperately:
$D_{c r}=\left[\begin{array}{cc}C_{1} & 0 \\ 0 & C_{2}\end{array}\right]$
$[M]\{\ddot{u}\}+[D]\{\ddot{u}\}+[K]\{u\}=0$
and the solution is $u(t)=\sum_{n=1}^{N} A_{n} \cos \omega_{n} t u_{n}$
Multiply the above equation with $\mathrm{A}_{N}{ }^{\mathrm{T}}$ leftly, and also replace $\{\mathrm{u}\}$ with $\mathrm{A}_{\mathrm{N}}\{\mathrm{u}\}$, where

$$
A_{N}=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]=\left[\begin{array}{cc}
0.826 & 0.56364 \\
-0.56364 & 0.826
\end{array}\right]
$$

we get
$\left[\begin{array}{cc}133.724 \omega^{2}+C_{1}^{\prime} \omega+25.7 E I & 0 \\ 0 & 133.724 \omega^{2}+C_{2}^{\prime} \omega+2.9 E I\end{array}\right]\left[\begin{array}{l}A_{1} \\ A_{2}\end{array}\right]=0$
If there are nontrivial solutions for $\mathrm{A}_{1}$ and $\mathrm{A}_{2}$, we obtain

$$
\begin{aligned}
& 133.724 \omega^{2}+C_{1}^{\prime} \omega+25.7 E I=0 \\
& 133.724 \omega^{2}+C_{2}^{\prime} \omega+2.9 E I=0
\end{aligned}
$$

So that critical damping matrix:

$$
\begin{aligned}
& D_{c r}^{\prime}=\left[\begin{array}{cc}
C_{1}^{\prime} & 0 \\
0 & C_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
251592.2 & 0 \\
0 & 84514.2
\end{array}\right] \\
& D_{c r}=A_{N} D_{c r}^{\prime} A_{N}{ }^{T}=\left[\begin{array}{cc}
198513 & -77788 \\
-77788 & 137593.5
\end{array}\right]
\end{aligned}
$$

Damping matrix in this case
$D^{\prime}=0.02 D_{c r}^{\prime}=\left[\begin{array}{cc}5031.844 & 0 \\ 0 & 1690.284\end{array}\right]$

At last, the force due to earthquake
$\{F\}=-[M] \cdot\left\{\ddot{u}_{g}\right\}$
Natural frequency
$f_{1}=\frac{\omega_{1}}{2 \pi}=50.36$ and $f_{2}=\frac{\omega_{2}}{2 \pi}=149.7$
According to the response spectrum of Fig 8 in note M-32, extrapolating to the calculated frequencies, we obtain the maximum displacements corresponding to $\mathrm{S}_{\mathrm{a}}=0.33 \mathrm{~g}$ are
$S_{d 1} \approx \frac{S_{a}}{\omega_{1}{ }^{2}}=\frac{0.33 \cdot 9.8}{940.8^{2}}=3.6538 \times 10^{-6} \mathrm{~m}$
$S_{d 2} \approx \frac{S_{a}}{\omega_{2}{ }^{2}}=\frac{0.33 \cdot 9.8}{316.43^{2}}=3.23 \times 10^{-5} \mathrm{~m}$
So
$\{F\}=-\left[\begin{array}{cc}133.724 & 0 \\ 0 & 133.724\end{array}\right] \ddot{u}_{g}$
Finally, we obtain

$$
\begin{aligned}
& {\left[\begin{array}{cc}
133.724 & 0 \\
0 & 133.724
\end{array}\right]\left[\begin{array}{l}
\ddot{u}_{A} \\
\ddot{u}_{B}
\end{array}\right]+\left[\begin{array}{cc}
5031.844 & 0 \\
0 & 1690.284
\end{array}\right]\left[\begin{array}{l}
\dot{u}_{A} \\
\dot{u}_{B}
\end{array}\right]+\left[\begin{array}{cc}
25.7 E I & 0 \\
0 & 2.9 E I
\end{array}\right]\left[\begin{array}{l}
u_{A} \\
u_{B}
\end{array}\right]=A_{N}^{T}\left[\begin{array}{l}
-133.724 \\
-133.724
\end{array}\right] \ddot{u}_{g}} \\
& {\left[\begin{array}{l}
\ddot{u}_{A} \\
\ddot{u}_{B}
\end{array}\right]+\left[\begin{array}{cc}
37.63 & 0 \\
0 & 12.64
\end{array}\right]\left[\begin{array}{l}
\dot{u}_{A} \\
\dot{u}_{B}
\end{array}\right]+\frac{1}{133.724}\left[\begin{array}{cc}
25.7 E I & 0 \\
0 & 2.9 E I
\end{array}\right]\left[\begin{array}{l}
u_{A} \\
u_{B}
\end{array}\right]=-\left[\begin{array}{c}
0.2624 \\
1.39
\end{array}\right] \ddot{u}_{g}}
\end{aligned}
$$

Then, maximum displacement
$u_{1, \text { max }}=0.2624 \cdot S_{d 1} \cdot u_{1}=\left[\begin{array}{c}7.92 \times 10^{-7} \\ -5.4 \times 10^{-7}\end{array}\right]$
$u_{2, \text { max }}=1.39 \cdot S_{d 2} \cdot u_{2}=\left[\begin{array}{l}2.53 \times 10^{-5} \\ 3.71 \times 10^{-5}\end{array}\right]$
$P_{1, \text { max }}=\left[(C \omega u)^{2}+(K u)^{2}\right]^{0.5}$
$=\left[\left(0.02 \cdot 940.8\left[\begin{array}{cc}198513 & -77788 \\ -77788 & 137593.5\end{array}\right]\left[\begin{array}{c}7.92 \times 10^{-7} \\ -5.4 \times 10^{-7}\end{array}\right]\right)^{2}+\left(E I\left[\begin{array}{cc}18.46232 & -10.614 \\ -10.614 & 10.15054\end{array}\right]\left[\begin{array}{c}7.92 \times 10^{-7} \\ -5.4 \times 10^{-7}\end{array}\right]\right)^{2}\right]^{0.5}$
$=\left[\left[\begin{array}{c}3.75 \\ -2.56\end{array}\right]^{2}+\left[\begin{array}{c}93.72 \\ -63.95\end{array}\right]^{2}\right]^{0.5}=\left[\begin{array}{c}93.795 \\ 64\end{array}\right]$

$$
\begin{aligned}
& P_{2, \max }=\left[(C \omega u)^{2}+(K u)^{2}\right]^{0.5} \\
& =\left[\left(0.02 \cdot 316.43\left[\begin{array}{cc}
198513 & -77788 \\
-77788 & 137593.5
\end{array}\right]\left[\begin{array}{c}
2.53 \times 10^{-5} \\
3.71 \times 10^{-5}
\end{array}\right]\right)^{2}+\left(E I\left[\begin{array}{cc}
18.46232 & -10.614 \\
-10.614 & 10.15054
\end{array}\right]\left[\begin{array}{c}
2.53 \times 10^{-5} \\
3.71 \times 10^{-5}
\end{array}\right]\right)^{2}\right]^{0.5} \\
& =\left[\left[\begin{array}{c}
13.52 \\
19.85
\end{array}\right]^{2}+\left[\begin{array}{c}
337.6 \\
497.4
\end{array}\right]^{2}\right]^{0.5}=\left[\begin{array}{c}
337.87 \\
497.8
\end{array}\right]
\end{aligned}
$$

Now, given the forces of $\mathrm{P}_{\mathrm{A}}$ and $\mathrm{P}_{\mathrm{B}}$, we calculate the forces acted on supports:


Assuming the forces that act on the supports are $\mathrm{F}_{0}$ and $\mathrm{F}_{\mathrm{L}}$, respectively, as in the above figure.
$F_{L}=\left.\frac{d M_{y}}{d z}\right|_{z=L}=\left.E I \frac{d K_{y}}{d z}\right|_{z=L}=\frac{4}{27} P_{A}+\frac{14}{27} P_{B}$
$F_{0}=P_{A}+P_{B}-F_{L}=\frac{23}{27} P_{A}+\frac{13}{27} P_{B}$
For $\mathrm{P}_{1, \max }$ :
$F_{1}=\left[\begin{array}{c}F_{0} \\ F_{L}\end{array}\right]=\frac{1}{27}\left[\begin{array}{cc}23 & 13 \\ 4 & 14\end{array}\right] P_{1, \text { max }}=\left[\begin{array}{c}110.71 \\ 47.08\end{array}\right]$
Likewise, for $\mathrm{P}_{2, \max }$ :
$F_{2}=\left[\begin{array}{l}F_{0} \\ F_{L}\end{array}\right]=\frac{1}{27}\left[\begin{array}{cc}23 & 13 \\ 4 & 14\end{array}\right] P_{2, \max }=\left[\begin{array}{c}527.5 \\ 308.2\end{array}\right]$
Again, $F=\left[F_{1}{ }^{2}+F_{2}{ }^{2}\right]^{0.5}=\left[\begin{array}{c}539 \\ 311.8\end{array}\right]$ Newton
So, the peak forces that act on the support $z=0$ and $z=L$ are 539 and 311.8 Newton, respectively.

