Problem Set VII

Due 11/02/06

This problem set illustrates applications of beam theory to Zircaloy Follower in a BWR for calculation of curvature caused by Zircaloy growth ; Consult Notes X on Beam Theory.

ZIRCALOY FOLLOWER

a) Geometry and Material properties:

Consider a BWR reactor core that has cruciform shaped control rods. When each control rod is fully withdrawn for power operation, it is replaced in the core by an attached "Zircaloy follower " to prevent excessive water hole peaking. The follower is also cruciform shaped and is shown in the adjacent figure. The dimensions are :
$\mathrm{L}=$ length in the z -direction $=2.4 \mathrm{~m} ; \mathrm{W}=$ width or span $=200 \mathrm{~mm}$; and $\mathrm{T}=$ thickness $=7 \mathrm{~mm}$.

The Zircaloy has a Young's Modulus of 75 GPa and a Poisson's Ratio of 0.25 . The growth strain in the z-direction as a function of fast fluence is given by the following equation :

$$
\begin{equation*}
\square_{z z}=C_{1} \mathrm{~N}+\mathrm{C}_{2} \mathrm{~N}^{2} ; \tag{1.1}
\end{equation*}
$$

where:

- the z-direction growth strain $\left(\square_{z z}\right)$ is given in percent;
- the fast fluence (N) is given in the units of $\left(10^{21}\right.$ fast neutrons per $\left.\mathrm{cm}^{2}\right)$ with the fast flux cutoff specified by $\mathrm{E}>1 \mathrm{MeV}$; and
- the constants are $\mathrm{C}_{1}=0.013$ and $\mathrm{C}_{2}=0.0018$.
b) Notation and Support Information :

For points originally on the axial centerline $(x=0 ; y=0)$, denote displacements in the x direction, the y -direction, and the z -direction displacement, respectively, by u, v, and w .

At $\mathrm{z}=0$, the follower is supported so that u, v, and w are all zero and so that no moments are applied. At $\mathrm{z}=\mathrm{L}$, the follower is supported so that the z -direction force is zero, so that u and v are zero, and so that no moments are applied.

c) Fast Neutron Fluence:

After several refueling cycles, a follower has an accumulated fast fluence given by:

$$
\begin{equation*}
\mathrm{N}=\left[\mathrm{N}_{\mathrm{x}}(\mathrm{x})\right]\left[\mathrm{N}_{\mathrm{z}}(\mathrm{z})\right] ; \tag{1.2}
\end{equation*}
$$

Where N is the fast fluence expressed in the units of Eq 1.1 ; where

$$
\begin{align*}
& \mathrm{N}_{\mathrm{x}}(\mathrm{x})=15 \square+\frac{0.1 \mathrm{x} \square}{\mathrm{~W}}[\text { and where } \tag{1.3}\\
& \mathrm{N}_{\mathrm{z}}(\mathrm{z})=1.49 \cos \square \frac{\square(\mathrm{z} \square(\mathrm{~L} / 2)) \square}{\mathrm{L}_{\mathrm{e}}} \square . \tag{1.4}
\end{align*}
$$

L_{e} is the extrapolated length of the core (2.54 m)
d) Questions: d.1) What is u as a function of z ? d.2) What is the value of w at $z=L$?

