22.314 Problem V Solution Fall 2006

Known

$E:=195000 \quad v:=0.3$
$\sigma \mathrm{A}:=150 \quad \sigma \mathrm{~B}:=260 \quad \varepsilon \mathrm{~B}=0.54 \cdot 10^{-2}$
Derived properties
$\varepsilon m A:=0$
$\varepsilon m B:=\varepsilon B-\frac{\sigma B}{E}$
$\varepsilon \mathrm{mY}:=0.002$
$\sigma Y:=\frac{\varepsilon m Y-\varepsilon m A}{\varepsilon m B-\varepsilon m A} \cdot(\sigma B-\sigma A)+\sigma A^{\prime}$ Linear interpolation between A anb B to get yield stress σY
$\sigma Y=204.098$
The 0.2% offset yield stress σY is 204.098 MPa
From the uniaxial stress-strain curve, when $\sigma p<=\sigma A, \varepsilon e=\varepsilon e A=0$; when $\sigma A<\sigma p<=\sigma B$, ε e is linear on σp; when $\sigma p=\sigma B, \varepsilon e=\varepsilon e B=\varepsilon B-\sigma B / E$

$$
\begin{aligned}
& \varepsilon e \mathrm{~A}:=0 \\
& \varepsilon \mathrm{eB}:=\varepsilon \mathrm{B}-\frac{\sigma \mathrm{B}}{\mathrm{E}}
\end{aligned}
$$

$\mathrm{i}:=0 . .100$
$\varepsilon \mathrm{e}_{\mathrm{i}}=\varepsilon e \mathrm{~B} \cdot \frac{\mathrm{i}}{100}$
$\sigma p_{i}:=\frac{\varepsilon e_{i}-\varepsilon e A}{\varepsilon e B-\varepsilon e A} \cdot(\sigma B-\sigma A)+\sigma A \quad / / \sigma p$ as a function of εe

Loading sequences and questions

$$
\sigma \mathrm{a}:=\left(\begin{array}{ccc}
137.5 & -12.5 & 75 \\
-12.5 & 137.5 & 75 \\
75 & 75 & 50
\end{array}\right)
$$

1)

$$
\sigma \mathrm{kk}:=\sigma \mathrm{a}_{0,0}+\sigma \mathrm{a}_{1,1}+\sigma \mathrm{a}_{2,2}
$$

$$
\sigma \mathrm{kk}=325
$$

$$
i:=0 . .2
$$

$$
\mathbf{j}:=0 . .2
$$

$$
\text { бae }:=0
$$

$$
S a_{i, j}:=\sigma a_{i, j}-\frac{1}{3} \cdot \delta(i-j, 0) \cdot \sigma k k
$$

$$
\mathrm{Sa}=\left(\begin{array}{ccc}
29.167 & -12.5 & 75 \\
-12.5 & 29.167 & 75 \\
75 & 75 & -58.333
\end{array}\right)
$$

$$
\left.\left.\sigma a e:=\sqrt{\frac{3}{2} \cdot\left[\left(S a_{0,0}\right)^{2}+\left(S a_{0,1}\right)^{2} \cdot 2+\left(S a_{0,2}\right)^{2} \cdot 2+\left(\mathrm{Sa}_{1,1}\right)^{2}+\left(\mathrm{Sa}_{1,2}\right)^{2} \cdot 2+(\mathrm{Sa}\right.}{ }_{2,2}\right)^{2}\right]
$$

$$
\sigma a \mathrm{e}=204.634
$$

Now calculate VonMises stress for comparision

$$
\begin{aligned}
& \text { eigena }:=\text { eigenvals }(\sigma \mathrm{a}) \\
& \text { eigena }=\left(\begin{array}{c}
150 \\
200 \\
-25
\end{array}\right) \\
& \sigma \mathrm{VM}:=\sqrt{\frac{1}{2} \cdot\left[(150-200)^{2}+(150+25)^{2}+(200+25)^{2}\right]} \\
& \sigma \mathrm{VM}=204.634
\end{aligned}
$$

We can see $\sigma a \mathrm{e}=\sigma \mathrm{VM}$
2) Strain tensor for σa
a) Elastic strain

$$
\begin{aligned}
& \mathrm{i}:=0 . .2 \\
& \mathrm{j}:=0 . .2 \\
& \varepsilon_{e l a_{i, j}} \mathrm{j}=\frac{1}{\mathrm{E}} \cdot\left[(1+v) \cdot \sigma \mathrm{a}_{\mathrm{i}, \mathrm{j}}-\mathrm{v} \cdot \delta(\mathrm{i}-\mathrm{j}, 0) \cdot \sigma \mathrm{kk}\right]
\end{aligned}
$$

$$
\text { عela }=\left[\begin{array}{lll}
4.167 \cdot 10^{-4} & -8.333 \cdot 10^{-5} & 5 \cdot 10^{-4} \\
-8.333 \cdot 10^{-5} & 4.167 \cdot 10^{-4} & 5 \cdot 10^{-4} \\
5 \cdot 10^{-4} & 5 \cdot 10^{-4} & -1.667 \cdot 10^{-4}
\end{array}\right]
$$

b) Mechanical strain

Since $\sigma a e=204>\sigma a=150$, mechanical strain exists and has to be calculated
Since the stress was applied in a proportional manner, Saij/бe is constant, thus we have $\varepsilon m(\mathrm{i}, \mathrm{j})=\left(3^{*} \mathrm{Sa}(\mathrm{i}, \mathrm{j}) / 2^{*} \sigma e\right)^{\star} \varepsilon e$

$$
\varepsilon \mathrm{ma}=\left[\begin{array}{lll}
4.318 \cdot 10^{-4} & -1.851 \cdot 10^{-4} & 0.001 \\
-1.851 \cdot 10^{-4} & 4.318 \cdot 10^{-4} & 0.001 \\
0.001 & 0.001 & -8.637 \cdot 10^{-4}
\end{array}\right]
$$

Total stress

$$
\text { ztola }=\text { eela }- \text { हma }
$$

$$
\begin{aligned}
& \text { عae }=1 \\
& \text { roota }=\operatorname{root}\left[\sigma \mathrm{ae}-\left[\frac{\varepsilon a e-\varepsilon e \mathrm{~A}}{\varepsilon e \mathrm{~B}-\varepsilon \mathrm{e}} \cdot(\sigma \mathrm{~B}-\sigma \mathrm{A})+\sigma \mathrm{A}\right] \text {, } \varepsilon a \mathrm{e}\right] \\
& \text { عae := roota } \\
& \varepsilon \mathrm{ae}=0.002 \\
& 100 \cdot \varepsilon a e=0.202 \text { // Mathcad sometimes doesn't show enough significant digits. } \varepsilon a e \text { is actually } \\
& 0.00202 \text { here } \\
& \varepsilon \mathrm{ma}_{\mathrm{i}, \mathrm{j}}=\frac{3 \cdot \mathrm{Sa}_{\mathrm{i}, \mathrm{j}}}{2 \cdot \sigma \mathrm{ae}} . \varepsilon \mathrm{\varepsilon ae}
\end{aligned}
$$

$$
\text { हtola }=\left(\begin{array}{lll}
8.485 \cdot 10^{-4} & -2.684 \cdot 10^{-4} & 0.002 \\
-2.684 \cdot 10^{-4} & 8.485 \cdot 10^{-4} & 0.002 \\
0.002 & 0.002 & -0.001
\end{array}\right)
$$

3) When stress is proportionally reduced to zero, ε ela vanishs while ε ma remains unchanged. عtola $=\varepsilon$ ma when zero stress is reached

$$
\sigma b:=\left(\begin{array}{ccc}
260 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \sigma \mathrm{kk}:=\sigma \mathrm{b}_{0,0}+\sigma \mathrm{b}_{1,1}+\sigma \mathrm{b}_{2,2} \\
& \sigma \mathrm{kk}=260 \\
& \mathrm{i}:=0 . .2 \\
& \mathrm{j}:=0 . .2
\end{aligned}
$$

$S b_{i, j}:=\sigma b_{i, j}-\frac{1}{3} \cdot \delta(i-j, 0) \cdot \sigma k k$

$$
\mathrm{Sb}=\left(\begin{array}{lll}
173.333 & 0 & 0 \\
0 & -86.667 & 0 \\
0 & 0 & -86.667
\end{array}\right)
$$

$$
\sigma b e:=\sqrt{\frac{3}{2} \cdot\left[\left(\mathrm{Sb}_{0,0}\right)^{2}+\left(\mathrm{Sb}_{0,1}\right)^{2} \cdot 2+\left(\mathrm{Sb}_{0,2}\right)^{2} \cdot 2+\left(\mathrm{Sb}_{1,1}\right)^{2}+\left(\mathrm{Sb}_{1,2}\right)^{2} \cdot 2+\left(\mathrm{Sb}_{2,2}\right)^{2}\right]}
$$

$$
\sigma b e=260
$$

4) Strain tensors for σb
a) Elastic strain
$\mathrm{i}:=0 . .2$
$\mathrm{j}:=0 . .2$
$\varepsilon e l b_{i, j}:=\frac{1}{E} \cdot\left[(1+v) \cdot \sigma b_{i, j}-v \cdot \delta(i-j, 0) \cdot \sigma k k\right]$
$\varepsilon \mathrm{elb}=\left(\begin{array}{lll}0.001 & 0 & 0 \\ 0 & -4 \cdot 10^{-4} & 0 \\ 0 & 0 & -4 \cdot 10^{-4}\end{array}\right)$
b) Mechanical strain

During the second loading, when σe increases from 0 to $\sigma a e$, no mechanical strain is produced. Since $\sigma b e=260>\sigma a e=204$, new mechanical strain will be produced when σe increases from $\sigma a e$ to σ be.

$$
\begin{aligned}
& \varepsilon b e:=1 \\
& \text { rootb }:=\operatorname{root}\left[\sigma \text { be }-\left[\frac{\varepsilon b e-\varepsilon e A}{\varepsilon e B-\varepsilon e A} \cdot(\sigma \mathrm{~B}-\sigma \mathrm{A})+\sigma \mathrm{A}\right], \varepsilon \mathrm{be}\right] \\
& \varepsilon b e:=\text { rootb } \\
& \varepsilon b e=0.004 \\
& 100 \cdot \varepsilon b e=0.407 \\
& \varepsilon \text { madd }_{\mathrm{i}, \mathrm{j}}:=\frac{3 \cdot \mathrm{Sb}_{\mathrm{i}, \mathrm{j}}}{2 \cdot \sigma \mathrm{bb}} \cdot(\varepsilon b \mathrm{e}-\varepsilon \mathrm{ea}) \\
& \varepsilon \text { madd }=\left(\begin{array}{lll}
0.002 & 0 & 0 \\
0 & -0.001 & 0 \\
0 & 0 & -0.001
\end{array}\right)
\end{aligned}
$$

عmadd is the addtional mechanical strain tensor that is produced when σe increases from oae to $\sigma b e$. Adding ε madd to $\varepsilon m a$ we can get the total mechanical strain when σb is reached.

$$
\varepsilon \mathrm{mb}:=\varepsilon \mathrm{madd}+\varepsilon \mathrm{ma}
$$

$$
\varepsilon \mathrm{mb}=\left(\begin{array}{lll}
0.002 & -1.851 \cdot 10^{-4} & 0.001 \\
-1.851 \cdot 10^{-4} & -5.916 \cdot 10^{-4} & 0.001 \\
0.001 & 0.001 & -0.002
\end{array}\right)
$$

c) Total stress

$$
\begin{aligned}
& \text { عtolb }=\varepsilon \mathrm{elb}+\varepsilon \mathrm{mb} \\
& \text { عtolb }=\left(\begin{array}{lll}
0.004 & -1.851 \cdot 10^{-4} & 0.001 \\
-1.851 \cdot 10^{-4} & -9.916 \cdot 10^{-4} & 0.001 \\
0.001 & 0.001 & -0.002
\end{array}\right)
\end{aligned}
$$

5) When stress is proportionally reduced to zero, ε elb vanishs while $\varepsilon m b$ remains unchanged. ε tolb $=\varepsilon \mathrm{mb}$ when zero stress is reached

Note: Some of the elements in the matrices may not be accurate because Mathcad sometimes doesn't show enough significant digits.

