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Problem Set IV Solution 

1. The stress due to force F is uniform with a value of σy/2 as shown in Figure (a). The 
stress due to pure bending in elastic regime is linearly symmetric as shown in Figure (b) In 
elastic regime, combination of force and moment will give a linear stress distribution with a 
maximum value achieved at z = −h/2. Thus when yielding begins, as shown in Figure (c) 

σ = σy − σy/2 = σy/2 
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The moment for reaching the yield at a local space can be calculated. The moment shown in 
the figure is counter clockwise, therefore: 

1 σy h 2 h −M1 = 2 × (− ) × ( ) × 
3 
× ( ) × b 

2 2 2 2 

1 
M1 = σybh

2 

12 
When further increasing the magnitude of moment, the yielding zone in lower beam will 
further extend but the maximum stress remains σy as elastic perfect plastic material property 
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is assumed. The upper beam become compressed and will also reach the yielding at a certain 
moment. This situation continues until the beam gets to the yielding at the whole cross 
section. The stress distribution is shown in Figure (d). To determine the moment, we first 
need to evaluate the point z0 which divide the compression and tension. Force balance in 
axial direction will give: 

F = 
σybh 

= ( 
h 
2 
− z0)(−σy)b + (z0 + 

h 
)σyb 
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Therefore, the moment M for actual yielding of the whole beam can be calculated: 

h h h h −M = −σy × (
2 
− z0) × ( + z0)/2 × b + σy × (z0 − (− )) × (− + z0)/2 × b 

2 2 2 
3M = 
16 σybh

2 is larger than M1 

2. Total strain energy is the sum of distortion energy and dilation energy: 

UT = UD + US 

UD = UT − US 
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US = (−P�v)
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Therefore: 
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UD = σi�i − (−P�v)
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Since 
3 3

Si = (σi + P ) = σ1 + σ2 + σ3 + 3P = 0 (2) 
i=1 i=1 

3 3

��
i = (�i − �v/3) = �1 + �2 + �3 − �v = 0 (3) 
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Plug Eq 2 and Eq 3 into Eq 1, we can get:
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UD = Si�
�
i2 
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3.	 (a) From the class note, assuming a constant value of thermal conductivity the linear power 
is proportional to the the temperature difference between the center line and fuel sur
face. 

q� = 4πkΔT 

The maximum linear power is limited by the melting of fuel, i.e. when melting firstly 
occurs at the center line of the fuel. Thus assume Tfo = 700oC and plug melting points 
and average thermal conductivities of UO2, UC and UN into above equations, we can 
get an estimation of the maximum achievable linear heat generation rates: 

qmax,UO
�	

2 
= 95 kW/m 

qmax,UC
�	 = 489 kW/m 

qmax,UN
�	 = 554 kW/m 

(b) Refer to note M12, thermal stress due to a parabolic temperature distribution would 
give a maximum stress intensity at the outer surface of the fuel in elastic regime. Using 
Tresca’s yield condition, when fracture firstly occurs at the outer surface of the fuel, 
the linear heat generation rate can be related to the the fracture stress as follows: 

q� = 
σT 16πk(1 − ν) 

Eα 

From the class notes, E = 175 GPa, ν = 0.3 for UO2, assume the same properties for 
UC. Plug material properties into the above equation, we can get: 

q� = 7.7 kW/mUO2 

q� = 24.3 kW/mUC 

Thus the q� to initiate cracking is typically less than 10% of that to initiate melting of the 
fuel. Both UC and UN provide an opportunity to increase q� significantly without violating 
the limits. 
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