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Problem Set II Solution 

1. Stress intensity = max{|σr − σθ|, |σθ − σz|, σz − σr|}
For thin wall approximation: 

σr = − 
Pi + Po (1)

2

PiR

2 − Po(R + t)2


σz = − 
(R + t)2 − R2 

(2) 

σθ = 
Pi − Po 

(R + 
t 
) (3)

t 2

Therefore: 

Sthin = σθ − σr = 
Pi − Po 

(R + 
t 
) + 

Pi + Po (4)
t 2 2 

Thick wall solution:

Equilibrium in radial direction gives:


dσr 
+ 

σr − σθ 
= 0 (5)

dr r 

Hook’s law: 

1 
�r = (σr − νσθ − νσz) (6)

E 
1 

�θ = (σθ − νσr − νσz) (7)
E 
1 

�z = (σz − νσr − νσθ) (8)
E 

duSince �θ = u/r, �r = 
dr , we get: 

d�θ 1 
= (�r − �θ) (9)

dr r 

For this close end cylinder far from the end, plane stress condition is assumed, i.e., σz is 
const. 
Plug Eq 6 and Eq 5into Eq 9, we get 

d 
(σθ + σr) = 0 (10)

dr 

Plug Eq 10 into Eq 5, we get 

d 1 d 
(r 2σr) = 0 (11)

dr r dr 

1 



With B.C. σr(r = R) = −Pi and σr(r = R + t) = −Po, we get: 

σr = −Pi( 
R 
r 

)2 + (1 − ( 
R 
r 

)2)
−Po(R + t)2 + PiR

2 

(R + t)2 − R2 

σθ = Pi( 
R 
r 

)2 + (1 + ( 
R 
r 

)2)
−Po(R + t)2 + PiR

2 

(R + t)2 − R2 

σθ − σr = 2( 
R 
r 

)2 (Pi − Po)(R + t)2 

(R + t)2 − R2 

Maximum stress intensity is at the location of inner radius: 

(12) 

(13) 

(14) 

Sthick = 2
(Pi − Po)(R + t)2 

(R + t)2 − R2 

The error in thin wall approximation is: 

|1 − 
Sthin 

Sthick 
| 

Results are tabulated below: 

t/R 
Pi = 2Po 

Pi = 20Po 

0.03 
1.41% 
1.31% 

0.10 
4.13% 
4.09% 

0.15 
5.67% 
5.88% 

0.30 
8.88% 
10.46% 

2. We use thin shell approximation to solve this problem. For a region of cylinder far from a

junction, stresses are: 

σθ = 
P R 
t 

(15) 

σr = −P/2 (16) 

σx = 
P R 
2t 

(17) 

Radial displacement: 

uc = 
P R2 

2Et 
(2 − ν + 

νt 
R 

) (18) 

For the sphere, stresses are: 

σθ = σφ = 
P R 
2t 

(19) 

σr = −P/2 (20) 

Radial displacement: 

PR2 νt 
us = (1 − ν + ) (21)

2Et R 
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At the junction, Note C Eq 30–33 give that at the edge of cylinder:


u0 = uc + 
V0 

+ 
M0 (22)

2β3D 2β2D 

φ0 = − 
V0 M0 (23)

2β2D 
− 

βD 

at the edge of hemisphere: 

2Rλ 2λ2 

u0 = us − V0 + M0 (24)
Et Et 

2λ2 4λ3 

φ0 = − V0 + M0 (25)
Et REt 

3(1−ν2 

)1/4where, λ = βsR, βs = (
R2t2 , u0 is the radial displacement at the junction, φ0 is the 

slope at the junction. 1 

Due to the continuity of the displacement and slope, the four unknowns u0, φ0, M0, and V0 

1Note that the direction of the shear force Q in Note L4 is different from that in Note C. If you assume the 
direction of Q0S is same as QOC , the continuity of shear force should give that: Q0S = −Q0C . 
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Figure 1: Junction of hemisphere and cylinder
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can be solved by above equations. It can be found that


M0 = 0 (26) 
V0 = −PR2/(4Rλ + Et/β3D) (27) 

u = uc + 
V0 (28)

2Dβ3


PR

σx = (29)

2t 

σθ = 
PR 

+ 
EV0 (30)

t 2DRβ3 

σr = −P/2 (31) 

With mean radius R = inner radius + t/2 = 1.155 m, t = 0.11 m, E = 200 GPa, ν = 0.3, we 
get 

(a) At the junction, from Eq 29–Eq 31:

σx = 81.38 MPa

σθ = 122.06 MPa

σr = -7.75 MPa

The maximum stress is the hoop stress: 122.06 MPa.


(b) Radial displacement as a function of radial postion z is: (R + z)�θ. Thus, from Eq 18, 
the radial displacement of cylinder is: 

PR νt 
(2 − ν + )(R + z)

2Et R 

From Eq 21, the radial displacement of hemishpere is: 

PR νt 
(1 − ν + )(R + z)

2Et R 

From Eq 28, the radial displacement of junction is: 

PR νt V0
( (2 − ν + ) + )(R + z)
2Et R 2DRβ3 

Therefore: 

Cylinder Sphere Junction

Max. displacement (m) 0.00089 0.00037 0.00063
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