Problem Set II Solution

1. Stress intensity $=\max \left\{\left|\sigma_{r}-\sigma_{\theta}\right|,\left|\sigma_{\theta}-\sigma_{z}\right|, \sigma_{z}-\sigma_{r} \mid\right\}$

For thin wall approximation:

$$
\begin{align*}
\sigma_{r} & =-\frac{P_{i}+P_{o}}{2} \tag{1}\\
\sigma_{z} & =-\frac{P_{i} R^{2}-P_{o}(R+t)^{2}}{(R+t)^{2}-R^{2}} \tag{2}\\
\sigma_{\theta} & =\frac{P_{i}-P_{o}}{t}\left(R+\frac{t}{2}\right) \tag{3}
\end{align*}
$$

Therefore:

$$
\begin{equation*}
S_{\text {thin }}=\sigma_{\theta}-\sigma_{r}=\frac{P_{i}-P_{o}}{t}\left(R+\frac{t}{2}\right)+\frac{P_{i}+P_{o}}{2} \tag{4}
\end{equation*}
$$

Thick wall solution:
Equilibrium in radial direction gives:

$$
\begin{equation*}
\frac{d \sigma_{r}}{d r}+\frac{\sigma_{r}-\sigma_{\theta}}{r}=0 \tag{5}
\end{equation*}
$$

Hook's law:

$$
\begin{align*}
\epsilon_{r} & =\frac{1}{E}\left(\sigma_{r}-\nu \sigma_{\theta}-\nu \sigma_{z}\right) \tag{6}\\
\epsilon_{\theta} & =\frac{1}{E}\left(\sigma_{\theta}-\nu \sigma_{r}-\nu \sigma_{z}\right) \tag{7}\\
\epsilon_{z} & =\frac{1}{E}\left(\sigma_{z}-\nu \sigma_{r}-\nu \sigma_{\theta}\right) \tag{8}
\end{align*}
$$

Since $\epsilon_{\theta}=u / r, \epsilon_{r}=\frac{d u}{d r}$, we get:

$$
\begin{equation*}
\frac{d \epsilon_{\theta}}{d r}=\frac{1}{r}\left(\epsilon_{r}-\epsilon_{\theta}\right) \tag{9}
\end{equation*}
$$

For this close end cylinder far from the end, plane stress condition is assumed, i.e., σ_{z} is const.
Plug Eq 6 and Eq 5into Eq 9, we get

$$
\begin{equation*}
\frac{d}{d r}\left(\sigma_{\theta}+\sigma_{r}\right)=0 \tag{10}
\end{equation*}
$$

Plug Eq 10 into Eq 5, we get

$$
\begin{equation*}
\frac{d}{d r} \frac{1}{r} \frac{d}{d r}\left(r^{2} \sigma_{r}\right)=0 \tag{11}
\end{equation*}
$$

With B.C. $\sigma_{r}(r=R)=-P_{i}$ and $\sigma_{r}(r=R+t)=-P_{o}$, we get:

$$
\begin{align*}
& \sigma_{r}=-P_{i}\left(\frac{R}{r}\right)^{2}+\left(1-\left(\frac{R}{r}\right)^{2}\right) \frac{-P_{o}(R+t)^{2}+P_{i} R^{2}}{(R+t)^{2}-R^{2}} \tag{12}\\
& \sigma_{\theta}=P_{i}\left(\frac{R}{r}\right)^{2}+\left(1+\left(\frac{R}{r}\right)^{2}\right) \frac{-P_{o}(R+t)^{2}+P_{i} R^{2}}{(R+t)^{2}-R^{2}} \tag{13}\\
& \sigma_{\theta}-\sigma_{r}=2\left(\frac{R}{r}\right)^{2} \frac{\left(P_{i}-P_{o}\right)(R+t)^{2}}{(R+t)^{2}-R^{2}} \tag{14}
\end{align*}
$$

Maximum stress intensity is at the location of inner radius:

$$
S_{t h i c k}=2 \frac{\left(P_{i}-P_{o}\right)(R+t)^{2}}{(R+t)^{2}-R^{2}}
$$

The error in thin wall approximation is:

$$
\left|1-\frac{S_{t h i n}}{S_{t h i c k}}\right|
$$

Results are tabulated below:

t / R	0.03	0.10	0.15	0.30
$P_{i}=2 P_{o}$	1.41%	4.13%	5.67%	8.88%
$P_{i}=20 P_{o}$	1.31%	4.09%	5.88%	10.46%

2. We use thin shell approximation to solve this problem. For a region of cylinder far from a junction, stresses are:

$$
\begin{align*}
\sigma_{\theta} & =\frac{P R}{t} \tag{15}\\
\sigma_{r} & =-P / 2 \tag{16}\\
\sigma_{x} & =\frac{P R}{2 t} \tag{17}
\end{align*}
$$

Radial displacement:

$$
\begin{equation*}
u_{c}=\frac{P R^{2}}{2 E t}\left(2-\nu+\frac{\nu t}{R}\right) \tag{18}
\end{equation*}
$$

For the sphere, stresses are:

$$
\begin{align*}
\sigma_{\theta} & =\sigma_{\phi}=\frac{P R}{2 t} \tag{19}\\
\sigma_{r} & =-P / 2 \tag{20}
\end{align*}
$$

Radial displacement:

$$
\begin{equation*}
u_{s}=\frac{P R^{2}}{2 E t}\left(1-\nu+\frac{\nu t}{R}\right) \tag{21}
\end{equation*}
$$

At the junction, Note C Eq 30-33 give that at the edge of cylinder:

$$
\begin{align*}
& u_{0}=u_{c}+\frac{V_{0}}{2 \beta^{3} D}+\frac{M_{0}}{2 \beta^{2} D} \tag{22}\\
& \phi_{0}=-\frac{V_{0}}{2 \beta^{2} D}-\frac{M_{0}}{\beta D} \tag{23}
\end{align*}
$$

at the edge of hemisphere:

$$
\begin{align*}
& u_{0}=u_{s}-\frac{2 R \lambda}{E t} V_{0}+\frac{2 \lambda^{2}}{E t} M_{0} \tag{24}\\
& \phi_{0}=-\frac{2 \lambda^{2}}{E t} V_{0}+\frac{4 \lambda^{3}}{R E t} M_{0} \tag{25}
\end{align*}
$$

where, $\lambda=\beta_{s} R, \beta_{s}=\left(\frac{3\left(1-\nu^{2}\right.}{R^{2} t^{2}}\right)^{1 / 4}, u_{0}$ is the radial displacement at the junction, ϕ_{0} is the slope at the junction. ${ }^{1}$

Due to the continuity of the displacement and slope, the four unknowns u_{0}, ϕ_{0}, M_{0}, and V_{0}

[^0]

Figure 1: Junction of hemisphere and cylinder
can be solved by above equations. It can be found that

$$
\begin{align*}
M_{0} & =0 \tag{26}\\
V_{0} & =-P R^{2} /\left(4 R \lambda+E t / \beta^{3} D\right) \tag{27}\\
u & =u_{c}+\frac{V_{0}}{2 D \beta^{3}} \tag{28}\\
\sigma_{x} & =\frac{P R}{2 t} \tag{29}\\
\sigma_{\theta} & =\frac{P R}{t}+\frac{E V_{0}}{2 D R \beta^{3}} \tag{30}\\
\sigma_{r} & =-P / 2 \tag{31}
\end{align*}
$$

With mean radius $R=$ inner radius $+t / 2=1.155 \mathrm{~m}, t=0.11 \mathrm{~m}, E=200 \mathrm{GPa}, \nu=0.3$, we get
(a) At the junction, from Eq 29-Eq 31:
$\sigma_{x}=81.38 \mathrm{MPa}$
$\sigma_{\theta}=122.06 \mathrm{MPa}$
$\sigma_{r}=-7.75 \mathrm{MPa}$
The maximum stress is the hoop stress: 122.06 MPa .
(b) Radial displacement as a function of radial postion z is: $(R+z) \epsilon_{\theta}$. Thus, from Eq 18, the radial displacement of cylinder is:

$$
\frac{P R}{2 E t}\left(2-\nu+\frac{\nu t}{R}\right)(R+z)
$$

From Eq 21, the radial displacement of hemishpere is:

$$
\frac{P R}{2 E t}\left(1-\nu+\frac{\nu t}{R}\right)(R+z)
$$

From Eq 28 , the radial displacement of junction is:

$$
\left(\frac{P R}{2 E t}\left(2-\nu+\frac{\nu t}{R}\right)+\frac{V_{0}}{2 D R \beta^{3}}\right)(R+z)
$$

Therefore:

	Cylinder	Sphere	Junction
Max. displacement (m)	0.00089	0.00037	0.00063

[^0]: ${ }^{1}$ Note that the direction of the shear force Q in Note $L 4$ is different from that in Note C. If you assume the direction of $Q_{0 S}$ is same as $Q_{O C}$, the continuity of shear force should give that: $Q_{0 S}=-Q_{0 C}$ 。

