22.314/1.56/2.084/13.14 Fall 2006

Problem Set II
Due 09/26/06

1. Consider a cylindrical vessel of inner radius R and wall thickness t with flat ends. The pressure inside the vessel is P_{i} and the surrounding pressure P_{o}. What is the relative error in estimating the maximum value of the stress intensity in the cylinder based on the thin shell approximation for values of:

$$
\begin{aligned}
t / R & =0.03 \\
t / R & =0.10 \\
t / R & =0.15 \\
t / R & =0.30
\end{aligned}
$$

Consider two cases:

$$
\begin{gathered}
P_{i}=2 P_{o} \\
P_{i}=20 P_{o}
\end{gathered}
$$

2. A pressure vessel is constructed of a cylinder with a hemispherical head at each end. There is no external restraint to either axial or radial displacement. Inside radius of both cylinder and hemispheres is R. The wall thickness is uniform at a value t. The length of the cylinder is L. No flaws or stress concentrations are present. Dimensions are:

$$
\begin{aligned}
R & =110 \mathrm{~cm} \\
t & =11 \mathrm{~cm} \\
L & =433 \mathrm{~cm}
\end{aligned}
$$

Material properties:

$$
\begin{gathered}
\text { Young's modulus }=200 \mathrm{GPa} \\
\text { Poisson's ratio }=0.3 \\
\text { Coefficient of thermal expansion }=12 \mu \mathrm{~m} / \mathrm{mK}
\end{gathered}
$$

The vessel is pressurized to a design pressure $\mathrm{P}=15.5 \mathrm{MPa}$.
Questions:
(a) What is the total (peak) stress as a function of radial position (z) at a junction between cylinder and hemisphere.
(b) What is the maximum radial displacement of the vessel cylinder and sphere?

