## 22.314/1.56/2.084/13.14 Fall 2006 Problem Set I Due 09/19/06

1. A tensile test on 1020 steel gives the following results:

| Load (kN)   | Diameter (mm) | Length (mm)        |
|-------------|---------------|--------------------|
| 0           | 12.8          | 50.800             |
| 22.2        | —             | 50.848             |
| 28.5        | _             | -(yielding begins) |
| 50.2        | 12.2          | 56.1               |
| 51.2 (Max.) | 10.4          | 67.3               |
| 43.6        | -             | 69.8 (fracture)    |

- (a) Calculate the elastic modulus.
- (b) Calculate the maximum nominal strain.
- (c) Calculate the tensile strength of this steel.
- 2. Calculate the maximum normal stress and the maximum shear stress in the cube shown below.



3. This problem illustrates some important stress tensor concepts and some calculation methods for treating a stress tensor.

Consider three stress tensors  $\sigma_a$ ,  $\sigma_b$ , and  $\sigma_c$  defined as follows:

$$\sigma_a = \begin{bmatrix} 55 & -5 & 30 \\ -5 & 55 & 30 \\ 30 & 30 & 20 \end{bmatrix};$$
  
$$\sigma_b = \begin{bmatrix} -10 & 0 & 0 \\ 0 & -10 & 0 \\ 0 & 0 & -10 \end{bmatrix};$$
  
$$\sigma_c = \sigma_a + \sigma_b$$

where the stresses are given in MPa units.

- (a) What are the three principal stresses that characterize each of these stress tensors ?
- (b) Draw a 3-D Mohr's circle to represent the three stress states.
- (c) Also place points on your Mohr's circles that give the stresses on planes normal to each of the original coordinate axes (x, y, z).
- (d) What are the unit vectors (direction cosines) that define principal directions for the three stress tensors?
- (e) What is the Tresca Stress for each stress tensor? What is the von Mises Stress for each stress tensor?