Core Physics Second Part How We Calculate LWRs

Dr. E. E. Pilat

MIT NSED

CANES Center for Advanced Nuclear Energy Systems

Method of Attack

- Important nuclides
- Course of calc
 - Point calc(PD + N) $\rightarrow \phi \rightarrow dN/dt \rightarrow N$ etc
 - Spatial Choice of attack
- Divide problem Lattice + Core
 - Take advantage of unit cells similarity
 - Calc detailed spectra and flux shape in unit cell
 - Homogenize, average over E \rightarrow few group σ or Σ

Important Classes of Nuclides

- Actinides = fuel + higher actinides
- Fission products
- Structural = Zr Al Fe
- Absorbers = B Er Gd Fe
- Radiologically important

Actinides - 1

- Z = 90 & beyond
- Some fissile (U233, U235, Pu239, Pu241, ...)

- Some have very large fission cross sections

- Many formed by successive neutron captures
- Some fertile (U238, Pu240, ...)

− Neutron capture → fissile nuclide

- Significant fast fission
- Significant inelastic scattering

Actinides - 2

- Actinides start 4 long chains of (mostly) alpha decay
- 4n thorium series (Th232)
- 4n+1 neptunium not found naturally
- 4n+2 uranium series (U238)
- 4n+3 actinium series (U235)

Actinides - 3

- Early members have very long half lives
- Tens of thousands to billions of years
- Useful in radioactive dating
- ~ 5 mev per alpha decay
- Some members are gases radiological hazard in mining, some fuel fabrication, disposal
- Chains responsible for long term problems
 with waste disposal

Secular Equilibrium

- Short-lived daughters of long-lived parents
- After sufficient time, a pseudo-equilibrium is reached
- Daughter activity is ~ same as that of longlived parent activity & decays with same half life

Bateman Solution of Linear Decay Chain

$$\begin{array}{ccc} \mathsf{N}_{1} \rightarrow \mathsf{N}_{2} \rightarrow \mathsf{N}_{3} \rightarrow \mathsf{N}_{4} \rightarrow \\ \lambda_{1} & \lambda_{2} & \lambda_{3} & \lambda_{4} \end{array}$$

If only N_1 is present at time zero with concentration $N_1(0)$, the activity of the jth nuclide in the chain is:

$$e^{(-\lambda_{2}t)}$$

$$+ \cdots + (\lambda_{1} - \lambda_{2})(\lambda_{3} - \lambda_{2})\dots(\lambda_{J} - \lambda_{2})$$

$$e^{(-\lambda_{J}t)} + \cdots + \lambda_{J}(\lambda_{2} - \lambda_{J})\dots(\lambda_{J-1} - \lambda_{J})$$

Reaction Rates

- If we know reaction rates, we know everything
- = Ν σ φ
- Nomenclature:
 - -X = position
 - -E = energy
 - -B = local burnup
- KEY ASSUMPTION for a given fuel type: Few group σ is only a function of x, B

Cross Sections

- Obtain σ (B) for each nuclide, fuel type from a unit cell or unit assembly calculation
- Unit calculation includes lots of energy detail, lots of local space detail (transport theory)
- Many reduced group cross section sets have been derived for various reactor types
- Ultimately, these come from "evaluated"

All Fewer Group Sets Come From Evaluated Cross Section Sets

- ENDF/B (US)
- JEF (Europe)
- JENDL (Japan)
- For common nuclides, these sets agree well
- Significant differences for uncommon nuclides

NUCLINE	BEAC	TION FILE	мат	THERMAL CROSS SECT. (B)			FAST CROSS SECT. (B)	
NUCLIDE	KEAC			2200 M/S	MAXW.AVG.	RES.INTEG.	14-MEV	FISS AVG.
92-U -235	Total	JEF-2.2	9228	697.5	606.2	556.5	5.862	7.657
		ENDF/B-VI	9228	700.6	612.2	557.5	5.860	7.663
		JENDL-3.2	9228	698.3	608.4	556.3	5.865	7.722
	BROND-2		9241	697.0	611.7	566.1	5.848	7.686
	Elast.	JEF-2.2	9228	15.11	15.02	152.8	2.840	4.409
		ENDF/B-VI	9228	15.12	15.04	152.4	2.840	4.418
		JENDL-3.2	9228	15.06	14.97	152.9	2.869	4.595
		BROND-2	9241	14.05	14.02	153.3	2.860	4.320
	Incl.	JEF-2.2	9228			0.1376	0.4177	1.917
		ENDF/B-VI	9228			0.1375	0.4177	1 917
		JENDL-3.2	9228			0.1549	0.3503	1.785
		BROND-2	9241			0.1838	0.3110	2.017
	n.2n	JEF-2.2	9228				0.5036	0 1369-01
		ENDF/B-VI	9228				0.5036	0 1369-01
		JENDL-3.2	9228				0 5429	0.1348-01
		BROND-2	9241				0.5677	0.1544-01
	n 3n	IEE-2.2	9228				0 3758 01	0 1023 04
	142-14	ENDE/B-VI	9228				0.3758-01	0.1922-04
		JENDL-3.2	9228				0.4179-01	0 1649.04
		BROND-2	9241				0.4200-01	0.1954-04
	Fiss	JEE-2-2	9228	583.2	504.4	271.6	2.060	1 210
	1 100	ENDE/B-VI	9228	586.2	509.9	272.2	2.060	1 219
		IENDL-3.2	9228	584.4	506.8	270.0	2.054	1.210
		BROND-2	9241	584.3	510.2	270.0	2.068	1.239
		IFF-2.2	9228	08.05	86.32	132.0	0.1212.02	0.0510.01
		ENDE/B.VI	9228	90.93	87.28	132.0	0.1213-02	0.9519-01
		IENDL-3.2	9228	99.83	86.66	132.6	0.1204-02	0.9557-01
		BROND-2	9241	98.70	87.47	142.7	0.1007-06	0.9169-01
		2010112-2		20.10	07.47		0.1000-02	0.9330-01

From JEF Report 14

Depletion

- Balance equation for nuclide N_i
- $dN_j/dt = -N_j\sigma_j\phi \lambda_jN_j + N_{j-1}\sigma_{j-1}\phi + \lambda_{k-1}N_{k-1}$
- But for common fuel nuclides, often all we need is:

$$dN_{j}/dt = -N_{j}\sigma_{j}\phi + N_{j-1}\sigma_{j-1}\phi$$

Which is Bateman equations with $\sigma\phi$ playing the part of λ

But ϕ may vary with time

Build the Core Model

- Deplete the unit cell/assembly (with some assumption about how to keep it critical)
- "Homogenize" cross sections over the unit cell or unit assembly
- "Homogenize" cross sections over several ranges of energy to get a "few-group" model as a function of burnup for a each assembly type

Assembly Burnup Codes

from NEA/NSC/DOC(2002)2

Burnup Calculation Method	Computer Code	Version (ID ^{*2})	No. of Participants		
	APOLLO*1	2(C)	1	5	
Botomon	HELIOS 1	1.4(K)	1		
Dateman	MKENO-BURN	2(D)			
	WIMS	7(B , G)	2		
	BOXER ^{*1}	(E)	1		
	CASMO	4(A)	1		
	FLEXBURN	(L)	1	9	
Matrix Exponential	KENOREST	1998(R)	1		
	SCALE	4.3(P), 4.4(Q)	2		
	SWAT	(M, N)	2		
	TGBLA/ORIGEN2.1	(H)	1		
Runge-Kutta-Gill	VMONT	(J)	1	1	
	Total		1	5	

Table 3.4. Burnup codes applied in the benchmark calculations

Effect of Chemical Binding on Hydrogen Scattering Cross Section

31-JAN-2003

High Energy U238 Inelastic Scattering

Core Calculation

- Nowadays nodal diffusion theory
- Sometimes finite difference diffusion theory
- Sometimes monte carlo
 - "Continuous" energy monte carlo now popular
 - Often uses ORIGEN for depletion
 - Doesn't eliminate problem of homogenization

Issues

- Homogenization how much is needed?
- Double heterogeneity (especially in HTGRs)
- Adequate spatial meshing for strong absorbers where fluxes change rapidly with distance
- Dancoff effect (mutual shielding due to adjacent fuel lumps) for irregular fuel designs

MIT OpenCourseWare http://ocw.mit.edu

22.251 Systems Analysis of the Nuclear Fuel Cycle Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.