4. ORIGEN2 COMMANDS

The instructions defined in this section, called ORIGEN2 comands, enable the user to precisely define the order in which any or all of the ORIGEN2 program functions are executed. This procedure is analogous to writing a FORTRAN program in that the commands define a series of operations which will be performed sequentially, with the sequence being variable at the user's option. The use of the comands to define the ORIGEN2 problem flowsheet allows the use of a "DO loop" command, which executes a set of instructions within the range of the loop a prescribed number of times. Coupled with other options, this gives the user the capability for easily investigating fuel recycle (e.g., plutonium) and nuclear fuel cycle waste production rates as a function of time.

The general format of the ORIGEN2 commands is
COM PARM(1), PARM(2), . . . PARM(I) ,
where COM is a keyword defining the instruction type and the PARM(I) are parameters supplying various data necessary for the execution of the operational commands. Details on the data format are given in Sect. 2.2. A list of the ORIGEN2 commands and a brief description of their functions are given in Table 4.1.

Before attempting to use ORIGEN2, it should be noted that there are certain restrictions on the order in which the commands must occur. The primary restriction is that the IIB command (Sect. 4.18), which reads the decay and cross-section libraries, must precede most other commands since it defines the list of nuclides being considered. Other restrictions will be noted when the individual commands are discussed.

Each ORIGEN2 command can be present in a single input strean a maximum number of times; the lixit depends on the specific command. This limit is given in the section (below) that describes each individual command. The limits can be changed by varying the dimensions of the appropriate array (s) within the ORIGEN2 source deck. The li=it on the total number of ORIGEN2 commands that may be ustc is 300 , a number which cen also be changed by varying array eimersions within the source deck.

Table 4.1. List of ORIGEN 2 commands

Command keyword	Description	Section	Page
ADD	Add two vectors	4.13	40
BAS	Case basis	4.3	28
BUP	Bumup calculation	4.14	42
CON	Continuation	4. 28	60
CUT	Cutoff fractions for summary tables	4.9	34
DEC	Decay	4.23	54
DOL	Do loop	4.11	38
END	Terminate execution	4.30	61
FAC	Calculate a multiplication factor	4.4	28
HED	Vector headings	4.7	33
INP	Read input composition, continuous removal rate, and continuous feed rate	4.6	31
IRF	Flux irradiation	4.21	50
IRP	Specific power irradiation	4.22	52
KEQ	Match infinite multiplication factors	4.10	45
LIB	Library print control	4.18	45
IIP	Iibrary print control	4.16	43
LPU	Data library replacement cards	4.20	49
MOV	Move nuclide composition from vector to vector	4.12	58
OPTA	Specify actinide nuclide output table options	4. 26	58
OPTF	Specify fission product nuclide output table apifons	4. 27	59
OPIL	Specify activation product output table options	4. 25	56
OUT	Print calculated results	4.5	22
PCH	Punch an outpur vector	4.15	42
PHO	Read photon lioraries	4.19	47
PRO	Reprocess fuel	4.24	55 27
RDA	Read comments regarding case being input	4.1	34
REC	Loop counter	4.8	34 27
IIT	Case title	4. 2	4
WAC	Nucilde accumulation	4.17	44
GTO	GO TO	4.31	61.

4.1 RDA - Read Coments Regarding Case Being Input

A. Function: Prints alphanmeric coments among the listing of the operational comands being input.
B. Daca sequepce:

RDA COMMENT (S)
where
RDA = command keyword
COMMENT (S) = alphanumeric message
C. Allowable number of RDA comands: Maximu total umber of comands.
D. Propagation: None.
E. Remariks: These comments are printed in the listing created when ORIGEN2 is interpreting the commands, which is separace from the card imput echo described in Sect. 2.6.

4.2 III - Case IItle

A. Function: Supplies case title printed in ORIGEN2 output.
B. Data sequence:

III A(9), . . . A (80)
where
TII = command keyword
$A(I)=$ alphanumeric characters in columas 9-80 only
C. Allowable number of IIT commands: 20
D. Propagation: Unefl changed.
E. Remarics: None.

```
4.3 BAS - Case Basis
```

A. Function: Supplies case basis painted in ORIGEN2 output.
B. Data sequence:

BAS A(9), . . A(80)
where
BAS = Command keyword

C. Allowable number of BAS commands: 10
D. Propagation: Until changed.
E. Remariks: The BAS comand only supplies an aiphanumeric message. The user is responsible for the consistency of the basis, the input material masses, specific power, erc.

4.4 FAC - Calculace a Vuleiplication Factor Based on Tocal Vector Masses

A: Function: Calculates a mitiplication factor, FACTOR[NFAC(1)], based on the total actinide plus fission product masses in one or two vectors for use in MOV (see Sect. 4.12) or ADD (see Sect. 4.13) commands.
B. Daca sequence:

FAC NFAC (1), . . . NFAC (4), RFAC (1)
where
EAC = command kegword
HFAC(1) = number of factor calculated by this command (must be greater than zero and less than or equal to the maximum number of FAC comands)
NFAC(2) = Vector number

```
NFAC(3) = .vector number
NFAC(4) = method for calculating FACTOR[NFAC(1)]:
    = 1 FACTOR[NFAC(1)] = T[NFAC(2)]+T[NFAC(3)]
    -2 FACTOR[NFAC(1)] - T[NFAC(2)]=T[NFAC(3)]
    = 3 FACTOR[NFAC(1)] = T[NFAC(2)]*T[NFAC(3)]
    = 4 FACTOR[NFAC(1)] = I[NFAC(2)]/T[NFAC(3)]
    = 5 FACTOR[NFAC(1)] = T[NFAC(2)]
    -6 FACTOR[NFAC(1)] = T[NFAC(3)]
    = 7 Factor[NFAC(1)] = 1.0/T[NFAC(2)]
    -8 FACTOR[NFAC(I)] = 1.0/T[NFAC(3)]
```

 where the \(\mathrm{I}[\mathrm{NFAC}(\mathrm{I})]\) are the total fission product
 plus actinide masses for the indicated vectors,
 expressed in kilograms.
 RFAC(1) = constant value to be used in place of the T[NFAC(I)]:
 .GT. \(0=\) substitute RFAC(1) for T[NFAC(2)] when
 calculating FACTOR[NFAC(1)]
 .EQ. \(0=\) use the \(\operatorname{T[NFAC(I)]~as~defined~}\)
 .IT. 0 = substitute [-RFAC(I)] for T[NFAC(3)] when
 calculating FACTOR[NFAC(1)]
 The units of RFAC(1) are kilograms.
 C. Allowed number of FAC commands: 20
 D. Propagation: Until another FAC comand with the same value of
 NFAC(1) is executed.
 E. Remarks: Some characteristic results from this comand are
 printed on unit 15.
 4.5 OUT - Print Calculated Besules
 A. Function: Cells for the calculated results in some or all of the output vectors to be printed.
B. Daca sequence:

OUT NOUT(1), . . . NOUT (4)
where
OUT $=$ command keyword
NOUT $(1)=$ number of vectors to be printed beginaing with the first vector:
.GT. $0=$ output on units IOUT, JOUT, and KOUT (Unit 6)
.IT. $0=$ output on unit 11
Nout(2) = frequeney of print if instruction is in a loop (Sect. 4.11) [print occurs first time through loop and every NoUr(2)th recycle thereafter]

NOUI(3) $=$ print number of present recycle:
.GT. $0=$ yes
.LE. $0=$ no
NOUT(4) = parameter controlling type of summary table printed:
.IT. $0=11$ vectors tested for inclusion in
sumary table except vector -NOUT(4)
.EQ.O = all vectors teated for inclusion in sumery table
.GT.O = Oniy vector NOUT(4) tested to see if a aucilde is included in the summary table
C. Allowable number of OUI commands: 20
D. Propagation: Sone.
E. - Remarks :

1. If NOUT(2).RE.1, a REC comand mest be employed (Sect. 4.8).

4.6 INP - Read Input Composition, Continuous Removal Rate, and Continuous Feed Rate

A. Function: Calls for nuclide composition, continuous nuclide feed rate, or continuous elemental removal raţe to be read.
B. Data sequence:

```
INP NINP(1), . . . NINP(6)
```

where

INP $=$ comand keyword
NINP(1) = number of vector in which initial compositions are to be stored
$\operatorname{NINP}(2)=$ read nuclide composition:
.EQ. $0=n 0$
.EQ. 1 = yes; units are g/basis unit (read on unit 5)
.EQ. 2 = yes; units are g-atoms/basis unit (read on unit 5)
.EQ.-1 = ges; units are g/basis unit (read on unit 4) .EQ. -2 = yes; units are g-atoms/basis unit (read on . unit 4)

NINP(3) = read continuous nuclide feed rate:
.LE. $0=$ no
.EQ.1 = yes; units are g/(time)(basis unit)
.EQ. 2 = yes; units are g-atoms/(time)(basis unit)
See NINP(5) for specification of time units.
$\operatorname{NINP}(4)=$ read element removal rate per unit time:
.IT.O = no read; no propagation
.EQ.O = no read, but propagate previously read values
.GI. $0=$ read NINP(4) data pairs (see Sect. 6.3)
See NINP(6) for specification of time units.
$\operatorname{NIMP}(5)=$ time units of continuous nuclide feed rate data (see Table 4.2)
$\operatorname{NINP}(6)=$ time units of continuous elemental removal rate data (see Table 4.2)

Table 4.2. Time unit designation

$1=$ seconds

$2=$ minutes
3 = hours
4 = days
5 = years
$6=$ stable
$7=10^{3}$ years (ky)
$8=10^{6}$ years (M)
$9=10^{9}$ years (GY)
C. Allowable number of INP comands: 15
D. Propagation: None.
E. Remarks: User is responsible for the consistency of the calculational basis with the input masses.

4.7 BED - Vector Headiags

A. Function: Allows alphanumeric vector headings to be specified.
B. Data sequence:

HED NHED A(1), . . A(10)
where
HED = command keyword
NRED = number of vector which is to be given heading
$A(I)=t e n-c h a r a c t e r$ alphanumeric heading anyplace on the card to the right of IHED
C. Allowable number of EED commands: 50
D. Propagation: Ontil the vector is overwitsen.
E. Remarks:

1. The heading is moved with the vector when the kOV (Sect. 14.12) and ADD (Sect. 14.13) comands are used.
2. If a $H E D$ comand is to be used to label either a vector of input concentrations [vector NINP(1), Sect. 4.6] or the vectors resuleing from a PRO command [vectors NPRO(2) and NPRO(3), Sect. 4.24], the HED comand must follow the INP or PRO Comand.
3. If $A(1)$ is an apostrophe or asterisk (*), the ten characters imediately following $A(I)$ are raken as the vecror heading. This allows for the inclusion of leading blanks.
```
4.8 REC - Loop Counter
```

A. Function: Coumts the number of times that a loop (DOL command, Sect. 14.11) has been executed.
B. Daca sequence:

REC
where
REC = command keyword
C. Allowable number of REC commands: 1
D. Propagation: Nome.
E. Remarks:

1. This comer is output as the "Recycle f" in ORIGEN2 output.

4.9 CUT - CutoEf Fractions for Sumary Tables

A. Function: Overifide defaule cutoff fractions for sumary output sables.
B. Daca sequence:
$\operatorname{CUT}[\operatorname{NCUT}(1), \operatorname{RCUI}(1)], \cdot . \cdot[\operatorname{NCUT}(N T), \operatorname{RCUT}(N I)],-1$
where
CUI = operatioaal command
NCII (I) = number of the output table to which cutoff fraction RCII (I) is to apply (see Table 4.3 for table numbers and descriptions)
$\operatorname{RCOT}(I)=$ new cutoff fraction for cable number NCUT(I)
NTI = total number of default cutoff values winch are
being overridden with this CUI comand
C. AIIorable number of CIT commonds: 3
D. PropagaEion: Bneti changed.

Trble 4.3. Description ef ogigeiz outpur taise

Table zumber	Description of sable	Unさts
1	Isotople compessizion of each elemen=	atom facction
2	Isotopic composition of each element	wefght fraction
3	Composition	g=am-a=0is
4	Composizion	arom fraction
5	Composizion	grams
6	Composision	weight fraction
7	Radioactivity (total)	C
8	Radioactivity (total)	fractional
9	- Thermal power	watts
10	Thermel power	fractional
$\text { add } \longrightarrow\left[\begin{array}{l} 11 \\ 12 \end{array}\right.$	Radioactivity (total) Radioactivity (total)	$\underset{\text { fractional }}{\text { Bq }}\} \underset{\text { add }}{ }$
13	Radioactive inhalation hazard	$\mathrm{m}^{3} \mathrm{aiz}$
14	Radioactive frhalation hazard	fractional
15	Radioactive ingestion hazard	m^{3} water
16	Radioactive ingestion hazard	fractional
17	Chemical ingestion hazard	m^{3}. water
18	Chemical ingestion hazard	fractional
19	Neutron absorprion rate	дeurrons/sec
20	Neutron absorption rate	fractional
21	Neutron-induced fission rate	fissions/see
22	Neutron-induced fission rate	fractional
23	Radioactivity (alpha)	C1
24	Radioactivity (alpha)	fractional
25	(alpha,n) neutron production	neutrons/sec
26	Spontaneous fission neutron production	neutrons/sec
27	Photon emission rate	photons/sec
28	Set test parameter ERR	-

E. Remariks:

1. If an output value for a particular nuclide is less than the cutoff fraction multiplied by the total table value for all vectors being tested (see Sect. 4.5 for additional details on which vectors ase tested), then that particular nuciide is not printed.
2. Table number 28 can be used to override the default value for ERR, presently set at 1.0E-25. ERR is used in logical IF statements instead of 0.0 .
3. An integer -1 must follow RCUT(NT) unless all 28 cutoff fractions are specified.
4. The default cutoff fractions for the first 26 tables (see Table 4.3) are 0.001; for Table 27 the cutoff is 0.01 .
5. The [NCUT(I),RCUT(I)] may continue onto subsequent cards. No operational command is used on the additional cards.
6. The application of the cutoff value to photon tables is somewhat different; it is discussed in Sect. 8.2.2.
4.10 KEQ - March Infinite Kuleiplication Factors
A. Function: Blend materials in two vectors so that the resuleing infinite multiplication factor (INF) matches that of another vector or al input value.
B. Daca sequence:

KEQ $\operatorname{NKEQ}(1), \operatorname{NKEQ}(2), \operatorname{NKEQ}(3), \operatorname{NKEQ}(4), \operatorname{NKEQ}(5), \operatorname{RKEQ}(1)$
where
KEQ = command kepword
$\operatorname{NKEQ}(1)=$ vector whose INF is to be matched by vector NKEQ(4)
NKEQ(2) = vector whose material is to be wholly included in the final blended material in vector MKEQ(4)
NKEQ(3) = vector whose material is to be apportioned to obtain the proper IMF for vector MKEQ(4)
NKEQ(4) = vector containing all material in vector NKEQ(2) plus part of the material in $N K E(3)$ and having the same IMF as either vector NKEQ(1) or RKEQ(I); that is,

$$
\operatorname{NKEQ}(4)=\operatorname{NKEQ}(2)+f * \operatorname{NKEQ}(3)
$$

where f is the factor by which $\mathbb{N K E Q (3) ~ m u s t ~ b e ~ m u l t i p l i e d ~}$ to obtain the correct NF for NKEQ(4).
NKEQ (5) = vector containing the portion of NKEQ(3) not blended into NKEQ(4); that is,

```
                NKEQ(5)=(1-F) * NKEQ(3)
```

If (1-f) is less than zero, then $N K E Q(5)$ is set to zero. RKEQ(1) = desired final INF for vector NKEQ (4) if RKEQ(1).GT.0.0. If RKEQ(1).LI.0.0, the INF of vector NKEQ(4) is matched to that of vector NKEQ(1). If RKEQ(1).EQ.O.O, the IMF is equal to RMOLV(NREC,1). The RMOLV values are specified in a data statement in MAIN (see Sect. 2.1); the NREC parameter is deseribed in Sect. 4.8.
C. Allowable number of KEQ coumands: 3
D. Propagation: None.

E. Remarks:

1. The equation used to calculate the parameter $£$, by which vector NKEQ(3) is multiplied before being combined with material in vector NKEQ(2) and being placed in vector NKEQ (4) is given by

$$
f=\left(k_{2}-k_{1}\right) \star_{D_{2}} /\left(k_{1}-k_{3}\right) \star_{D_{3}}
$$

where
k_{1} - DFIF $s 0$ be matched from vector NKEQ(1) or RKEQ(1)
$k_{2}=$ DrF of material in vector NKEQ (2)
$k_{3}=$ IMF of material in vector MKEQ(3)
$D_{2}=$ meucrom absorption Fate of macerial in vector MKEQ(2), neutrons sec-1
$D_{3}=$ neutron absorpeion rate of material in vector NXEQ(3), Reutzons sec^{-1}
2. Some characteristic results from this comand are printed on unt 15.
4.11 DOL - DO LOOPA. Function: A "DO loop" which executes the comands within itsrange a prescribed number of times.
B. Data sequence:
DOL NDOL (1), NDOL (2)
where
DOL = command keyword
NDOL (1) = number of the CON comand (Sect. 4.28) which definesthe range of this DOL. Each DOL menst have a unqueCON associated with it.
NDO (2) E the cocal number of times the instructions within theloop are to be executed
C. Allowable number of DOL Commands: 2
D. Propagarion: None.
E. Remaries: None.
4.12 MOV - Move Nucilde Composition from Vector to VectorA. Function: Moves (1.e., copies) the aucilde concentration data in- - one-vector to another vector, nucilde'by auclide.
B. Data sequence:
MOD SMOV (1), NMOV (2), NMOT (3), BMOV (1)
where
MOV = command ikeyword
MMOV (1) = aumber of the vector where the concentrations to bemoved are presencly stored
NMOV (2) $=$ number of the vector where the concentrations in vector $\operatorname{MMOD}(1)$ are to be moved. May be the same as MROV(1).
MMOV(3) = source of additional multiplier .GT. $0=$ number of variable multiplier vector that contains the additional factors by which vector $\operatorname{MMOV}(1)$ is to be multiplied before being moved to vector NMOV(2). The variable mitipliers are in array RMJV and are initialized with a DATA statement in MAIN. The particular element of RMJVV used is
RMULV[NREC, RMOV (3)]
where RREC is the recycle number (Sect. 4.8). The total miniplier, RMUT, is given by
 HREC \#ust be defined to use the variable multiplier option.
.EQ. $0=$ no additional muleiplier is used; that is, BMITT $=\operatorname{BMOV}(1)$.
.IT. 0 = The additional muleiplier to be used was previously calculated by an FAC command (see Sect. 4.4) and designated as EACTOR[NFAC(1)] at that time. To use this factor, set $\operatorname{mon}(3)=-\mathrm{NFAC}(1)$; the total multiplier is then given by

```
                RMITLT = FACTOR[-NMOV(3)]*RMOD(1).
```

$\operatorname{BMOV}(1)=$ factor by which rector $\operatorname{NMOD}(1)$ is to be multiplied before being stored in vector MMOV(2).
C. Allowable number of MOV commands: 99
D. Propagation: None.

E. Remarks:

1. Vector $\operatorname{NMOV}(2)$ can be zeroed by moving another vector to MMOV (2) with RMOV(1) $=0.0$.
2. The information in vector NMOV(1) is not descroyed by the MOV command.
3. Vector $\operatorname{MMOV}(2)$ will have the same heading as vector NMOV(1) after the MOV command has been executed.

4.13 ADD - Add Two Vectors

A. Function: Adds the nuclide concentration data in one vector to that in another vector, guclide by auclide.
B. Data sequence:
$A D D \operatorname{NADD}(1), \operatorname{NADD}(2), \operatorname{NADD}(3), \operatorname{RADD}(1)$
where
$A D D=0 p e r a t 10 n a l$ command
$\operatorname{NADD}(1)=$ number of the vector where the concentrations to be added are presently stored
$N A D D(2)$ number of the vector to which the concentrations in vector MADD(1) are to be added
$\operatorname{NADD}(3)=$ source of additional mitiplien .GT. $0=$ if $\operatorname{NADD}(3) . G T .0$, it is the number of the varlable muieiplier vector which contains the Eactors by which vector $\operatorname{NADD}(1)$ is tQ be muleiplied before being added to vector $\operatorname{NADD}(2)$. The varlable mithpliers are in array RMmp and are initialized with a DATA statement in MAIN. The particular element of BMOLV used is

RMULV[NREC, $\operatorname{KADD}(3)]$ where NREC is the recycle number (see Sect. 4.8). The total muleiplier, RMWT, is given by

EMULI = RMILV[NREC, NADD (3)]*RADD (1)
NREC must be defined to use this option (see Sect. 4.8).
.EQ. $0=$ no additional multiplier used; that is, RMILT = RADD(1).
.LT. 0 = the additional multiplier to be used was previously calculated by a FAC comand (see Sect. 4.4) and designated as EACTOR[NFAC(1)]. To use this factor, get $\operatorname{MADD}(3)=-\mathrm{NFAC}(1)$; the total multiplier is then given by RMILI = FACTOR[-NADD (3)]*RADD (1)
$\operatorname{RADD}(1)=$ factor by which vector $\operatorname{NADD}(1)$ is to be maleiplied before being added to vector MADD(2) or as specified under $\operatorname{MADD(3)~above.~}$
C. Allowable number of ADD commands: 30
D. Propagation: None.
E. Remarics:

1. Vector $K A D D(1)$ may be suberacted from vector NADD(2) by setting $\operatorname{RADD}(1)=-1.0$. (CAJIION: Negative nucilde concentrations can resuit in fatai errors.)
2. The information in vector $\operatorname{RADD}(I)$ is not alcered by the $A D D$ comand.
3. Vector $\operatorname{MADD}(2)$ will have the same headings 28 vector NADD(1) after the ADD command has been executed.

4.14 BUP - Buraup Calcularion

A. Function: Defines the basis and calculates the average burnup, flux, and specific power for an irradiation.
B. Data sequence:

BUP
Irradiation
BUP
where
BUP = command keyword
Irradiation $=$ the operarional comands (generally several IRPs or IRFs) that describe the fuel irradiation upon which the burnup calculation is to be based.
C. Allowable zumber of BUP commands: 20 (ten pair).
D. Propagation: Until superseded by other BUP Commands.
E. Remariks:

1. A BUP command must appear both before and after the statements constituring the fuel irradiacion upon which the burnup calculation is to be based. Other comands may be present between the BUP statements.
4.15 PCE - Punch an Output Vector
A. Function: Punch a dasignated output vector in ORIGEN2-readable format or write it to a disk file.
B. Daca sequence:

PCE NPCH (1), NPCH (2), NPCH (3)
where

$$
\begin{aligned}
P C E= & \text { comand keyword } \\
N P C E(1)= & \text { conerol character for light mucilde and seructural } \\
& \text { macerial punch }
\end{aligned}
$$

$\mathrm{NPCH}(2)=$ control character for actinide nuclide punch
$\mathrm{NPCH}(3)=$ control character for fission product auclide punch
If $\mathrm{NPCH}(\mathrm{I})$.EQ. 0 - no punch
.GT. 0 - number of output vector to be punched .LT.O - number of storage vector to be punched
C. Allowable number of PCH commands: 54
D. Propagation: None.
E. Remarks:

1. Format of punched output is [2X,I2,4(1X,I6,2X,1PE10.4)]; see Sect. 6.1 for details.
2. Units of punched output are g-atoms.
3. The last record (card) written by each PCH command is

0 BURNUP FLUX SPECIFIC POWER. The burnup, flux, and specific power are average values produced by the BUP command (Sect. 4.14) and must be present for a file read on unit 4 [NINP(2).IT. O; see Sect. 4.6]. These parameters are not necessary for input material composirions read with NINP(2).GT.O.
4.16 LIP - Iibrary Print Control
A. Function: Controls the printing of the input data libraries.
B. Data sequence:

IIP $\operatorname{NLIP}(1), \operatorname{NLIP}(2), \operatorname{NLIP}(3)$
where
LIP $=$ command keyword
MLIP(1) = control character for decay library print
filif(2) $=$ control character for cross-section library print
NLIP(3) = control character for photon library print If NLIP(I).EQ. 0 - no print .GT. 0 - print library
C. Allowable number of IIP comands: 5
D. Propagation: Until superseded.
E. Remarks: None.

4.17 WAC - Nuclide Accumulation

A. Function: Multiplies a concentration vector by a fractional recovery vector and stores the result in vector B, which contains continuous feed rates.
B. Data sequence:

WAC NHAC (1), NWAC (2)
where
WAC = comand keyword
NWAC(1) $=$ number of fractional recovery vector (Sects. 3.4 and 3.5) which is to multiply concentration vector NWAC(2). Fractional recovery NWAC(1) should contain the removal race of each element from the system in units of sec^{-1} (equivalent to the feed rate to the next system being analyzed).
NWAC(2) $=$ number of concentration vector which is to be multiplied by fractional recovery vector NWAC(1)
C. Maximum allowable number of WAC commands: 2
D. Propagation: None.
E. Remarks:

1. This command will enable the continuous accumulation of waste from a reactor with continuous reprocessing (e.g., an MSBR) to be calculated. The steady-state fuel composition in vector NWAC(2) is multiplied by the appropriate continuous removal rates stored in fractional zecovery vector NWAC(1); the result is subsequently stored in vector B. Then the waste is decayed, 00049
with vector B representing the continuous feed of waste to the waste decay step from the continuously reprocessed steady-state Ieactor.
4.18 IIB - Read Decay and Cross-Section Libraries
A. Function: Read decay and cross-section libraries; substitute decay and cross-section cards and cards with nonstandard reactions.
B. Data sequence:

IIB NLIB(I), . . . NIIB(11)
where

LIB $=$ colmand keyword
NIB(1) = control character for printing matrix of non-zero reaction rates (array A) for the libraries read (see Sect. 8.2.1).

If NLIB(1).GI. 0 - print
.LE.O - no print
NLIB(2) $=$ identification number of light nuclide decay library to be read; see Table 4.4
MIB(3) $=$ identification number of actinide nuclide decay library to be read; see Table 4.4
MIIB(4) = identification number of fission product nuclide decay library to be read; see Table 4.4

MIB(5) = identification number of light nuclide cross-section library to be read; see Table 4.4
NIIS (6) = identification number of actinide nuclide cross-section library to be read; see Table 4.4
MIIB(7) $=$ identification number of fission product nuclide yield and cross-section library to be read; see Table 4.4 If $\operatorname{NLIB}(2-7) . E Q .0$ - no read
.GI. 0 - normal read on unit NIE(8)
00050

Table 4.4. Mumbers of ORIGEN2 daza librizies

Type af libraty		Category of isorope			MLI3(12) ${ }^{\text {a }}$
		Aceivation product [MI3 (2 or 5)]a	Actialde [MIJ(3 or 6)]a	fission produce [M13(4 or 7)]	
Decay		1	2	3	
Phoron		101	102	103	
		Crossmeerion libraries			
PirR:	235 v -arythed DO_{2} : 33,000 Kid/metrie too	204	205	206	1
PRR:	2350 -enriched DO_{2} in e self-zenciaied Pu recycle reactor	207	208	209	2
PIR:	Pu-antiched VO_{2} in ecl:-generased fu recyele reacter	210	211	212	3
84R:	235v-enstehed vO_{2}	251	252	253	4
BiR:	235 U -enriched fuel in a self-gederated fu recycle reactor	254	255	236	5
Eur:	Pi-entiched fuel in a self-geneazied fu recyele reactor	237	258	269	6
Pren:	ThO_{2}-anclehed with denatured ${ }^{233} \mathrm{v}$	213	214	215	7
PIR :	Pu-earlched TnO_{2}	216	217	218	8
PITR:	235 u -ariched VO_{2}; 50,000 YPd/weryle ton	219	220	221	9
Prr:	HO_{2}-arichee with rakeup, denatured 235 y	222	223	224	10
MR:	HO_{2} enriched with recyeled, denafured ${ }^{233} \mathrm{u}$	225	${ }^{27}$	227	11

00051

arefer co Sect. 4.18 for the use of these parameters.

$00051 a$

.IT. 0 - normal read on unit NLIB(8) and substitute card read on urit NIIB(9)

NII 18 ($)$ number of input unte for normal reading of the buik of the libraries

NIIB $(9)=$ number of input unit for reading substitute cards
NIIB(10) = number of non-standard reactions to be read If NLIB(IO).EQ. 0 - no read
.GT.O - mon-standard reactions read on unit ll IB (8)
.LI. 0 - non-standard reactions read on unit NKIB(9)

KIIT(II) control character identifying the set of actinides with direct fission product yields; see Table 4.5
NLIB(12) = control character ideatifying the set of variable actinide cross sections to be used; see Table 4.4
C. Allorable number of LIB comands: 5
D. Propagation: Until another set of decay libraries is read.
E. Remaries:

1. If substitute cards are to be read, the IPO command (s) (Sect. 4.20) must precede the IIB commen in which the cards are to be read.
2. See Sect. 5 for library format details.

$$
4.19 \text { PHO - Read Photon Libraries }
$$

A. Function: Read the photon production rate per disintegration in 18 energy groups.

Table 4.5. Actinide sets with direct fission product yields

MIE (II:	Actinides with direct fission product yields
1	$235,238 \mathrm{U}, 239,241 \mathrm{Pu}$
2	$232 \mathrm{Th}, 233,235 \mathrm{U},{ }^{239} \mathrm{Pu}$
3	$232 \mathrm{Th}, 233,235,238 \mathrm{U}, 239,241 \mathrm{Pu}$
4	$232 \mathrm{Th}, 233,234,238 \mathrm{U}, 239,241 \mathrm{Pu},{ }^{245} \mathrm{Cm},{ }^{252} \mathrm{Cf}$

B. Data sequence:

PHO NPHO(1), . . . NPHO(4)
where
PHO = comand keyword
NPHO(1) = identification number of activation product photon Library to be read; see Table 4.4
NPHO(2) = identification number of actinide nuclide photon library to be read; see Table 4.4
NPHO(3) = identification number of fission product nuclide photon library to be read; see Table 4.4
If NPHO(1-3).LE. 0 - no read .GT. 0 - read

NPEO(4) $=$ number of input unit on which the photon libraries are to be read
C. Allowable number of PEO comands: 5
D. Propagation: Until another set of photon libraries is read.
E. Remariks: See Sect. 5.5 for library format details.
4.20 LPU - Daca Library Replacement Cards
4. Function: Read nuclide identifiers for replacement decay and/or cross-section data cards to be read by LIB command (Sect. 4.18).
B. Data sequence:

IPU NLPU (1), . . . NLLPU (MAX), -1
where

$$
\begin{aligned}
\text { LPD }= & \text { command keyword } \\
\text { MLPU(1-MAX) }= & \text { nuclide identifiers for replacement data cards } \\
& \text { in the order in which they occur in the origial } \\
& \text { data library } \\
\text { MAX }= & \text { aumber of nuclide identifiers to be read for a given } \\
& \text { iPD conmand; mast be .LE. } 100
\end{aligned}
$$

C. Allowaile number of IPU cards: 9
D. Propagation: Until another LIB command is executed.

E. Remarks:

1. If less than 100 muclide identifiers are specified, a -1 (integer) must appear after the last identifier.
2. As many cards may be used as are required.
3. The IPU command (s) must precede the IIB command in which the replacement data cards will be read.
4. The first LPO command is associated with the first negative control variable in the $\operatorname{NLIB}(2-7)$ set of control variables (Sect. 4.18). The second LFU command is associated rith the second negarive control variable in the NLIB(2-7) set of control varisbles, etc.
5. See Sects. 5.1 and 5.2 for librasy format detasis.

4.21 IRF - FIux Irradiation

A. Function: Irradiation for a siagle interval wich the neutron flux specified.
B. Data sequence:

IRF $\operatorname{RIRF}(1), \operatorname{RIRF}(2), N \operatorname{NF}(1) . . . \operatorname{NIRF}(4)$
where
IRF = command keyword

- $\operatorname{RIBF}(1)=$ time at which this irradiation inceival ends
$\operatorname{BIRF}(2)=1 f \operatorname{RIRF}(2) . G 1.0 .0$, this is the neutron flux during this irradiation incerval in neutrons $\mathrm{cm}^{-2} \mathrm{sec}^{-1}$.
If RIFR(2).IT.0.0, the neutron flux is given by:
KEWFLUX = OLDFLTE*[-EIBF (2)]
where

$$
\begin{gathered}
\text { NEWFLUZ }=\text { flux so be used during this interval, } \\
\text { meutrons } \mathrm{cm}^{-2} \mathrm{sec}^{-1} \\
00055
\end{gathered}
$$

$$
\begin{aligned}
\text { OLDFIUX }= & \text { flux for the same time period from the } \\
& \text { previous irradiation, neutrons } \mathrm{cm}^{-2} \mathrm{sec}^{-1} . \\
& \text { See remark } 2 \text { below. }
\end{aligned}
$$

$\operatorname{NiLF}(1)=$ number of the vector where the material composition at the beginning of this irradiation interval is stored $\operatorname{NIRF}(2)=$ number of the vector where the material composition at the end of this irradiation interval is to be stored $\operatorname{NIRF}(3)=$ time units of $\operatorname{RIRF}(1)$; see Table 4.2 $\operatorname{NIRF}(4)=$ specification of time at which this irradiation interval begins:
$0=$ starting time is the end of the previous IRF, IRP, or DEC interval. All reactivity and burnup information is retained, and MIRR is not altered. Used for continuing irradiation/decay on the same output page.
1 = starting time is set to zero. All reactivity and burnup information is retained, and MIRR is set to zero. Used for beginning a new irradiation on the same output page.
$2=$ starting time is set to zero. All reactivity and burnup information and MIRR are set to zero. Used to begin a new irradiation/decay on a new output page.
$3=$ same as $\operatorname{NIRF}(4)=0$ except that the first seven lines of the irradiation information are set to zero. Used for continuing irradiation to a new output page.
$4=$ same as $\operatorname{NIRF}(4)=1$ except that the first seven lines of the reactivity and burnup information are set to zero. Used to begin the decay following irradiation on a new output page while retaining the average - irradiation parameters.
C. Allowable aumber of IRF commands: See remark 1 below.
D. Propagation: None.
E. Remarks

1. The total number of IRF + IRP + DEC comands must be .LE. 150.
2. For this option to be used, the time steps for the eurrent irradiation and decay sequence must correspond exactly to those in the previous sequezce. The fluxes from the previous irradiation are not altered if [-RIFF(2)] is less than zero.
3. The "reactivity and burnup information" referred to in NIRF(4) consists of seven lines of data characteristic of an individual vector (e.g., time, infinite multiplication factor, neutron flux) and three lines containing irradiation parameters (e.g., bumup) averaged over the range of the BUP comands (Sect. 4.14). Also, see Sect. 8.2. 2
4. Internal ORIGEN2 parameters related to the flux/specific power calculations are printed on uait 15 (see Sect. 8.2.1).

4. 22 IRP - Specific Power Irradiation

A. Function: Irradiation for a single interval with the specific power ${ }^{-}$ specified.
B. Data sequence:
$\operatorname{IRP} \operatorname{RIRP}(1), \operatorname{RIRP}(2), \operatorname{NIRP}(1), \cdot . \operatorname{NIRP(4)}$
where
IRP = command keyword
RIRP(1) = time at which this irradiation interval ends
RIRP(2) = power level during this irradiation interval

$$
\begin{aligned}
& \text {.GT. } 0=\text { MW }(t) \text { per unit of fuel input } \\
& \text {.IT. } 0=\text { the power is given by: } \\
& \text { NEWPOWER = OLDPOWER* }[-R I R P(2)]
\end{aligned}
$$

where
NENPOWER = power to be used during this interval, MW (+).
See remark 2 below.
00057

NIRP(1) = number of the vector where the material composition at the beginaing of this irradiation interval is stored
NIRP(2) = number of the vector where the material composition at the end of this irradiation interval is to be stored
$\operatorname{NIRP}(3)=$ time units of $\operatorname{RIRP}(1)$; see Table 4.2
$\operatorname{NIRP}(4)=$ specification of the time at which this irradiation interval begins:
$0=$ starting time is the end of the previous IRF, IRP, or DEC interval. All reactivity and burnup information is retained, and MIRR is not altered. Used for continuing irradiation/decay on the same output page.
1 = starting time is set to zero. All reactivity and burnup information is retained, and MIRR is set to zero. Used for beginning a new irradiation on the same output page.
2 = starting time is set to zero. All reactivity and burnup information and MIRR are set to zero. Used to begin a new irradiation/decay on a new page.
3 = same as $\operatorname{MRP}(4)=0$ except that the first seven lines of the irradiation information are set to zero. Used for continuing irradiation to a new output page.
$4=$ same as $\operatorname{NIRP}(4)=1$ except that the first seven lines of the reactivity and burnup information are set to zero. Used to begin the decay following irradiation on a new output page while retaining the average irradiation parameters.
C. Allowable number of IRP comands: See remark l.below.
D. Propagation: None.
E. Remarks:

1. The total number of IRF + IRP + DEC commands must be .IE. 150.
2. For this option to be used, the time steps for the current ifradiation and decay sequence must correspond exactly to those in the previous sequence. The powers from the previous irradiation are not altered if [-RIRP(2)] is less than zero.
3. The "reaciivity and burnup information" referred to in NIRP(4) consists of seven lines of data characteristic of an individual vector (e.g., time, infinite multiplication factor, neutron fiux) and chree lines containing irradiarion parameters (e.g., burnup) averaged over the range of the BUP commands (Sect. 4.14). .
4. Internal ORIGEN2 parameters related to the fiux/specific power calculations are printed on untt 15 (see Sect. 8.21).
5. 23 DEC - Decay
A. Function: Decay for a single interval.
B. Data sequence:
$\operatorname{DEC} \operatorname{DEC}(1), \operatorname{NDEC}(1), \ldots \operatorname{NDEC}(4)$
chere
DEC = operational command
$D E C(1)=t i m e ~ a t ~ w h i c h ~ t h i s ~ d e c a y ~ i n t e r v a l ~ e n d s ~$
NDEC(1) = muber of the vector where the material composition at the beginaing of this decay interval is stored

NDEC(2) = number of the vector where the material composition at the end of this decay interval is stored

NDEC(3) $=$ time units of DEC(1); see Table 4. 2
NDEC(4) = specificarion of the time at which this decay interval begins:

0 - starting time is the end of the previous IRF, IRP, or DEC interval. All reactivity and burnup information is retained, and MIRR is not altered. Used for continuing irradiation/decay on the same output page. 1 = starting time is set to zero. All reactivity and buraup information is retained, and MIRR is set to zero. Used for beginning a new irradiation on the same output page.
$2=s t a r t i n g$ time is set to zero. All reactivity and bumnup information and MIRR are set to zero. Used to begin a nev irradiation/decay on a new outpur page.
$3=$ same as $\operatorname{NDEC}(4)=0$ except that the first seven lines of the reactivity and burnup information are set to zero. Used for continuing irradiation to a new output page.
4 = same as $\operatorname{NDEC}(4)=1$ except that the first seven lines of che reactivity and burnup information are set 50 zero. Used to begin the decay following irradiation on a nev output page while retafaing the average irradiation parameters.
C. Allowable number of DEC comands: See below.
D. Propagation: None.
E. Remarks:

1. The total number of IRF + IRP + DEC commands must be .IE.150.
2. The "reaceivity and burnup information" referred to in NDEC(4) consists of seven lines of data characteristic of an indifidual vector (e.g. time, infinite miltiplication factor, neucton flux) and three lines containing irradiation parameters (e.g., burnup) averaged over the range of the BUP comands (Sect. 4.14).

4.24 PRO - Reprocess Fuel

A. Function: Reprocess fuel into two product compositions.
B. Datz sequence:

PRO $\operatorname{IPRO}(1)$, . . . $\operatorname{NPRO}(4)$
where
KPRO (1) = number of the vector where the material composition that is to be reprocessed is stored
KPBO (2) = number of the vector where the material that is recovered is to be stored. The amount of an isotope of clement NI recovered is given by:
[Mass of isotope NE][f(NPRO(4)].
The fraction $f[\mathrm{NPRO}(4)]$ is the fractional recovery of element NE specified by variable NRPO(4) below. See also Sects. 3.4 and 3.5.
$N P R O(3)=$ number of the vector where the material not recovered is to be stored. The amount of an isotope of clement NE not recovered is given by:
[Mass of isotope NE][1.0-f(NPRO(4))].
MPRO(4) = aumber of the set of fractional recoveries which is to be used in this reprocessing operation. If NPRO(4) is greater than zero, indifidual fractional recoveries (Sect. 3.4) are to be used. If NPRO(4) is less than zero, group fractional recoveries are to be used (Sect. 3.5).
C. Allowable number of PRO comands: 20
D. Propagation: None.
E. Remarks: None.

4.25 OPII - Specify Activation Product Output Options

A. Function: Specifies which output table types (auclide, element, or summary) are to be printed for the activation products.
B. Data sequence:
OPTL NOPTL (1), . . . NOPIL (24)
where

$$
\begin{aligned}
\text { OPTL = } & \text { command keyword } \\
\text { NOPTL }(I)= & \text { control character indicating which output table types } \\
& \text { are to be printed for the activation products; see } \\
& \text { Table } 4.6 \\
I= & \text { eable number; see Table } 4.3 \text { for output table description }
\end{aligned}
$$

C. Allowable number of OPTL commends: 20
D. Propagation: Oneil changed.

Table 4.6. Specification of output table types to be pinted

MOPTL (I) BOPTA(I) SOPTF (I)	Table type printed		
	Nuclide	Element	Summary
1	Yes	Yes	Yes
2	Fes	Tes	No
3	Yes	No	Yes
4	No	Yes	Yes
5	Fes	No	No
6	Ho	Yes	sio
7	No	No	Tes
8	No	No	No

E. Remarks:

1. The NOPTL(I) must all be on a single carci.
2. If NOPIL (1) is less than 1 , orly a summary grams table is printed for all nuclides (including actinides and fission produces) uneil pew comands (after an STP, Sect. 4.29) are read.
3. Oniy the first 24 tables in Table 4.3 are controlled by the OPIL command.

4.26 OPTA - Specify Options for Actinide Nuclide Output Table

A. Function: Specifies which output table types (nuclide, element, or summary) are to be printed for the actinide auclides.
B. Data sequence:

OPTA NOPTA(1), . . . NOPTA(24)
where
OPTA = command keyword
NOPTA(I) - control character indicating which output table types are to be princed for the actinde nuclides; see Table 4.6 $I=$ table number; see Table 4.3 for output table description
C. Allowable number of OPTA comamds: 20
D. Propagation: Un=il changed.
E. Remarks:-

1. The NOPTA(I) wist all be on a single card.
2. If NOPTA(1) is less than 1 , only a sumanty grams table is printed for all auclides (includiag activation and fission products) until new commads (after an STP, Sect. 4.29) are read.
3. Oniy the first 24 tables in Iable 4.3 are controlled by the OPTA command.
```
4.27 OPTF - Specify Oprions for Fission Product
                        Nuclide Ourpus Table
```

A. Function: Specifies which types of output tables (nuclide, element, or sumary) are to be printed for fission product nuclide
B. Data sequence:

OPTF NOPTF(1), . . . NOPTF(24)
where

```
        OPTF = command keyword
        NOPTF(I) = control character indicating which output table types
            are to be printed for the fission procuct nuciides;
            see Table 4.6
        I = rable number; see Table 4.3 for output table descriprion
```

 C. Aliowable number of OPTF commands: 20
 D. Propagation: Until changed.
 E. Remarks:
 1. The NOPTF(I) must all appear on a single card.
 2. If NOPTF (1) is less then 1 , only a sumary grams table is
 printed for all nuciides (including activetion products
 and actinides) until new commands (after an SIP, Sect.
 4.29) are read.
 3. Only the first 24 tables in Table 4.3 are controlled by the
 OPTF coumand.

4. 28 CON - Continuation

A. Function: Defines the ranges of the DOL command (Sect. 4.11) or GIO comand (Sect. .4.31).
B. Daca sequence:

CON NCON
where
CON = command keyword
NCON = aumber of this CON comand; must be equal to NDOL(1) for the DOI command which is to be associated with this CON comand
C. Allowable mumber of $C O N$ commands: 20

- D. Propagation: None.
E. Remarks:

1. There must be one, and only one, CON command for each DOL command. 2. If the DOL command is removed, the corresponding CON comand must also be removed.
2. 29 STP - Execute Previous Comands and Branch
A. Function: Execute the set of commands preceding the SIP comand. Then read and execute more comands.
B. Data sequence:

STP NSTP
where
STP = comand kegword
NSTP = branching concrol character:
1 = read new misceilaneous initialization data (Sect. 3) and
a new set of commands (Sect. 4), and execute them.
2 - read a new set of comands (Sect. 4) and execute them.
3 = execute the preceding set of comands Egain.Aciitional input data (libraries and initial nuclideconcentrations) will be required.
4 = terwinate execution (same as EMD).
C. Allowable number of STP comands: Inlimited.
D. Propagarion: None.
E. Remarks: None.
4.30 END - Terminate Execution
A. Function: Terminate execution.
5. Data sequence:
End
where
END = comand keyword
C. Allowable number of END commands: 1
D. Propagarion: None.
E. Remerks: None.

4. 31 GIO - Go To a Group of Instructions and Execute

A. Function: Indicates a fange of instructions that should be executed and a flux/power multiplier for this range
B. Data Sequence:

GTO NGTO(1) NGTO(2) RGIO
where
GIO = comand kegwork
NGIO(1) = number of CON comand (Sect. 4. 28) char inmediately precedes the group of instructions to be executed (if GI.O) or that this command is the last to be executed (if LT.O)
NGIO(2) = number of CON comand that imediately follows the group of instruetions to be executed
RGTO = paramerer by which any fluxes or powers in the group of instructions to be executed will be wiriplied; RGTO does not alrer the value of fluxes/powers stored for future use
C. Allowable number of GIO commands: 10
D. Propagation: None.
E. Remarks:

1. Following the execution of the group of instructions defined by the GTO instruction, control is returned to the instruction immediately following the GIO.

MIT OpenCourseWare
http://ocw.mit.edu

22.251 Systems Analysis of the Nuclear Fuel Cycle

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

