22.251 LAB Exercise 4 PWR Fuel Unit Cell Analysis with MCNP4C

Eugene Shwageraus & Pavel Hejzlar

October 23, 2009

Courtesy of Dr. Xu, Dr. Hejzlar, Dr. Fridman, and Dr. Shwageraus. Used with permission.

MCNP Overview

- 48000 lines of Fortran and 1000 lines of C code
- 500 person-years
- Continuously evolving, developed by LANL
- Most current version MCNP5
 - we will use version MCNP4c
- Exact solution of transport equation by simulation of large number of individual particles histories
- Takes time to get accurate results
- Easy to run on many CPUs
 - □ a factor of 100 speedup is possible

Input file structure

- Title card
- Three blocks:
 - Cell cards [block 1]
 - Surface cards [block 2]
 - Data cards (materials, physics) [block3]
- Each block is separated by a single blank line

General Card Format

- First line of the input deck is a title
- Input lines can not exceed 80 columns
- Insensitive to capital/small letters
- Special characters:
 - C in column 1-5 denotes a comment
 - \$ after input data denotes a comment
 - & after input data continuation of previous line
 - Blanks in column 1-5 continuation of previous line

Geometry specification

- Modeled system is represented by a collection of regions (or cells) bounded by surfaces
- Cells are defined by intersections, unions and complements of regions
 - Union (A or B)
 - Intersection (A and B)

(A : B) is all space outside union A and B (complement)

Cell Card Format: Block 1

J M D GEOM PARAMS

- \Box J = cell number, starting in columns 1-5
- M = material number (0 if cell is void)
- D = cell material density
 - positive = atom number density (atom/barn-cm)
 - negative = mass density (gram/cc)
- GEOM listed of bounding surfaces
- PARAMS optional cell parameters

Surface Card Format: Block 2

J A LIST

- □ J = surface number, starting in columns 1-5
- A = surface mnemonic
- LIST = surface parameters

Example:

• cylinder with r = 15 cm, extending along z axis

1 cz 15 \$ cylinder of radius 15 cm

Mnemonic	Type	Description	Equation	Card Entries	
P PX PY PZ	plane	general normal to x -axis normal to y -axis normal to z -axis	Ax + By + Cz - D = 0 $x - D = 0$ $y - D = 0$ $z - D = 0$	A B C D D D D	
SO S SX SY SZ	sphere	centered at origin general centered on x -axis centered on y -axis centered on z -axis	$\begin{aligned} x^2 + y^2 + z^2 - R^2 &= 0 \\ (x - \bar{x})^2 + (y - \bar{y})^2 + (z - \bar{z})^2 - R^2 &= 0 \\ (x - \bar{x})^2 + y^2 + z^2 - R^2 &= 0 \\ x^2 + (y - \bar{y})^2 + z^2 - R^2 &= 0 \\ x^2 + y^2 + (z - \bar{z})^2 - R^2 &= 0 \end{aligned}$	$ \begin{array}{c} \mathbf{R} \\ \bar{x} \ \bar{y} \ \bar{z} \ R \\ \bar{x} \ R \\ \bar{y} \ R \\ \bar{z} \ R \end{array} $	
C/X C/Y C/Z CX CY CZ	cylinder	parallel to x -axis parallel to y -axis parallel to z -axis on x -axis on y -axis on z -axis	$\begin{array}{l} (y-\bar{y})^2+(z-\bar{z})^2-R^2=0\\ (x-\bar{x})^2+(z-\bar{z})^2-R^2=0\\ (x-\bar{x})^2+(y-\bar{y})^2-R^2=0\\ y^2+z^2-R^2=0\\ x^2+z^2-R^2=0\\ x^2+y^2-R^2=0\\ x^2+y^2-R^2=0 \end{array}$	$ar{y} \ ar{z} \ R \ ar{x} \ ar{z} \ R \ R \ R \ R \ R \ R \ R \ R \ R \ $	

PWR Unit Cell

110011-10.4(-1100100-200)\$ fuel1100107.06685e-2(1300500-600300-400100-200)\$ coolant

Blue – surface #

Red – cell #

Data specifications: Block 3

- Type of particles
- Problem materials
- Specification of sources
- How results scored (tallies)
- Level of details for physics of particle interactions
- Cross section libraries
- and much more

Materials specification

- Material unique number
- Elemental (isotopic) composition
- Cross section compilation to be used
- ID number = ZZZAAA
 - m11 8016.50c 4.64149E-02

92234.86c 8.49269E-06

92235.54c 1.05705E-03

92238.86c 2.21413E-02

Cross section library specification

- Cross section data tables
 - Section III of Chapter 2 of MCNP manual
 - □ List of cross sections Appendix G, Table G2
- Sometimes available for elements
 - 24000.60c natural chromium
- Sometimes natural elements need to be put together from isotopes
- The physics of XS temperature dependence
 - only partially treated by MCNP
 - XS available mostly for 300K
 - Scattering is treated but not $S(\alpha,\beta)$
 - Absorption Doppler effect XS lib should be generated for each temperature

Tally specifications

- Surface current tally, F1
 - Each time particle crosses a surface, it is added to the tally
- Average surface flux tally, F2
- Average cell flux tally, F4

$$\mathrm{F1} = \int_{A} dA \int_{E} dE \int_{4\pi} d\Omega \, \mathbf{n} \boldsymbol{\cdot} \mathbf{J}(\mathbf{r}_{s}, E, \boldsymbol{\Omega})$$

$$\mathrm{F2} = \frac{1}{A} \int_{A} dA \int_{E} dE \int_{4\pi} d\Omega \, \Phi(\mathbf{r}_{s}, E, \mathbf{\Omega})$$

$$\mathrm{F4} = \frac{1}{V} \int_{V} dV \int_{E} dE \int_{4\pi} d\Omega \, \Phi(\mathbf{r}, E, \mathbf{\Omega})$$

F4 Tally example

F4:N CELL#

FC4:N YOUR COMMENTS HERE

E4:N 0.5E-6 20 \$ ENERGY STRUCTURE

FM4:N 1.0 1000 (-6) \$ MULTIPLIERS

 $C\int \varphi(E)R_m(E)dE$

- -1 total cross section without thermal
- -2 absorption cross section
- -3 elastic cross section without thermal
- -4 average heating number (MeV/collision)
- -5 gamma-ray production cross section, barns
- -6 total fission cross section
- -7 fission v
- -8 fission Q (MeV/fission)

MCNP output tables

- Input listing
- Summary of particle loss/creation
- Summary of kcode (neutron criticality)
- Tallies and tally fluctuation charts
- Output controlled by print command
 - print \$ produce everything
 - print 110 \$ print basic + table 110
 - print -110 \$ All tables except 110

Summary of output tables

Table No.	Table Description	Table No.	Table Description
$\begin{array}{c} 10\\ 20\\ 30\\ 35\\ 40\\ 50\\ 60(b)\\ 62(b)\\ 70\\ 72(b)\\ 85\\ 90\\ 98\\ 100(b)\\ 102\\ 110\\ \end{array}$	Source information Weight windows information Tally descriptions Coincident detectors Material compositions Cell vols & masses; surface areas Cell importances Forced coll.; expon. transform Surface coefficients Cell temperatures Electron range & straggling KCODE source data Physics const.& compile options Cross section tables $S(\alpha, \beta)$ nuclide assignment First 50 starting histories	$\begin{array}{c} 120\\ 126\\ 128(b)\\ 130\\ 140\\ 150\\ 160(d)\\ 161(d)\\ 162(d)\\ 170\\ 175\\ 178\\ 180\\ 190(b)\\ 198\\ 200(b) \end{array}$	Importance function analysis Cell particle activity Universe map Particle weight balances Neutron/photon nuclide activity DXTRAN diagnostics TFC bin tally analysis p(x) tally PDF plot Cumulative $p(x)$ plot Source frequency; surface source Estimated k_{eff} by cycle Estimated k_{eff} by batch size WWG bookkeeping summary WWG summary WWG rom multigroup fluxes WW generated windows

(d) = default, (b) = basic

MCNP statistics

Relative error

Important but not sufficient information

Range of R	Quality of Tally
$> 0.5 \\ 0.2 ext{ to } 0.5 \\ < 0.1 \\ < 0.05$	Meaningless Factor of a few Reliable (except for point/ring detectors) Reliable even for point/ring detectors

Figure of Merit

should remain constant after early cycles

$$FOM = \frac{1}{R^2 T}, \qquad T-$$

T-run time

MCNP statistics

- Variance of variance (VOV)
 - R indicates precision of the tally mean
 - VOV indicates how accurate is the estimate of R
 - Hence relative variance of R calculated
 - VOV should be always less than 0.1 for all tallies

$$VOV = \frac{S^2(S_{\overline{x}}^2)}{S_{\overline{x}}^2} = \frac{\sum_{i=1}^N (x_i - \overline{x})^4}{\left[\sum_{i=1}^N (x_i - \overline{x})^2\right]^2} - \frac{1}{N}.$$

Example of tally fluctuation chart

	1	tally	4				tally	14		
nps	mean	error	vov	slope	fom	mean	error	vov	slope	fom
16000	2.5565E-19	0.1546	0.0460	0.0	13	1.6147E-20	0.1550	0.0990	0.0	13
32000	2.6267E-19	0.1057	0.0219	0.0	14	1.5614E-20	0.1098	0.0404	0.0	13
48000	2.9321E-19	0.0822	0.0129	10.0	15	1.5964E-20	0.0868	0.0228	0.0	13
64000	2.9096E-19	0.0725	0.0108	10.0	14	1.6062E-20	0.0760	0.0189	0.0	13
80000	2.9088E-19	0.0655	0.0086	10.0	14	1.6037E-20	0.0687	0.0161	4.9	13
96000	2.9487E-19	0.0595	0.0072	10.0	14	1.5578E-20	0.0631	0.0130	2.7	13
112000	2.9758E-19	0.0545	0.0061	10.0	15	1.5749E-20	0.0571	0.0105	3.0	13
128000	3.0167E-19	0.0509	0.0052	10.0	15	1.5970E-20	0.0528	0.0086	2.7	14
144000	3.0142E-19	0.0483	0.0050	10.0	14	1.5824E-20	0.0496	0.0075	2.7	14
160000	3.0284E-19	0.0461	0.0046	10.0	14	1.6205E-20	0.0465	0.0064	2.8	14
176000	3.0391E-19	0.0443	0.0042	10.0	14	1.6276E-20	0.0441	0.0056	3.2	14
192000	3.0143E-19	0.0427	0.0040	10.0	14	1.6351E-20	0.0420	0.0050	3.5	14
200000	3.0080E-19	0.0420	0.0040	10.0	14	1.6317E-20	0.0410	0.0048	3.9	14

Ten statistical tally tests

Tally Mean, \overline{x} :

1. The mean must exhibit, for the last half of the problem, only random fluctuations as N increases. No up or down trends must be exhibited.

Relative Error, R:

- 2. R must be less than 0.1 (0.05 for point/ring detectors).
- 3. ${\cal R}$ must decrease monotonically with N for the last half of the problem.
- 4. R must decrease as $1/\sqrt{N}$ for the last half of the problem.

Variance of the Variance, VOV:

- 5. The magnitude of the VOV must be less than 0.1 for all types of tallies.
- 6. VOV must decrease monotonically for the last half of the problem.
- 7. VOV must decrease as 1/N for the last half of the problem.

Figure of Merit, FOM:

- 8. FOM must remain statistically constant for the last half of the problem.
- 9. FOM must exhibit no monotonic up or down trends in the last half of the problem.

Tally PDF, f(x):

10. The SLOPE determined from the 201 largest scoring events must be greater than 3.

Tally Normalization

- Tallied results
 - Flux in units of n/cm²/f-s-n
 - Reaction rates in n-barn/cm²/f-s-n
 - f-s-n(fission source neutron) is directly proportional to power
- Normalization constant will be
 - $\Box FMF = (P \times v)/(Q \times k_{eff})$
- P = power (Watts)
- v = average number of neutrons per fission
- $Q = 200 Mev \times 1.602 \times 10^{-13} [J/MeV]$
- k_{eff} = eigenvalue = $v \times (f$ -loss to fission)/f-src

Running MCNP

Located on MIGHTYALPHA

Command

- mcnp4c3 i=input.in o=outp.out
- outp.out output file

Other outputs

- runtpe binary restart file
- mctal separate tally file
- File name must be less than 8 characters

MCNP input file for Lab 04

REPRESENTATIVE PWR UNIT CELL (4.5 w/o UO2 FUEL) -for solution С c CELL DEFINITIONS С 1000 10 7.06685e-2 (1300 500 -600 300 -400 100 -200) imp:n=1 tmp=5.0246e-8 \$ Water 1100 11 -10.4 $(-1100 \ 100 \ -200)$ imp:n=1 tmp=7.7553e-8 \$ fuel pin 1200 12 1.00000e-4 (1100 -1200 100 -200) imp:n=1 tmp=2.53e-8 \$ Gap 1300 13 4.34418e-2 (1200 -1300 100 -200) imp:n=1 tmp=5.3512e-8 \$ Clad (-100:200:-300:400:-500:600)imp:n=0 tmp=2.53e-8 \$ External Void 9999 0 С C BLANK LINE MUST FOLLOW c SURFACE DEFINITIONS С *100 pz -2.00 \$ bottom of active core *200 pz 2.00 \$ top of active core *300 px -0.63 \$ low-x edge of unit cell *400 px 0.63 \$ high-x edge of unit cell *500 py -0.63 \$ low-y edge of unit cell *600 py 0.63 \$ high-y edge of unit cell 1100 cz 0.4096 \$ Fuel Pin 1200 cz 0.4178 \$ Gap 1300 cz 0.4750 \$ Clad С C BLANK LINE MUST FOLLOW

MCNP input file for Lab 04

```
C DATA
C
c H2O
m10 8016.50c 1.0 1001.50c 2.0
mt10 lwtr.04t
C
c 4.5 w/o UO2
m11 8016.50c 4.64149E-02
     92234.86c 8.49269E-06
     92235.54c 1.05705E-03
     92238.86c 2.21413E-02
c Helium
m12 2004.50c 1.0
c Zircaloy-4
m13 40000.60c 1.0
C
ksrc 0.0 0.0 -1.0
     0.0 0.0 0.0
     0.0 0.0 1.0
```


MCNP input file for Lab 04

```
C
c tally materials
m1000 92235.54c 1.0
m1001 92238.86c 1.0
C
c Reaction Rates
fc4 reaction rates
f4:n 1100
sd4 2.10829
e4 0.625E-6 20.0 T
fm4 (1.0 1000 (-6))(1.0 1001 (102))
C
C
mode n
kcode 5000 1.0 5 150
prdmp 150 150 150
print
```


MIT OpenCourseWare http://ocw.mit.edu

22.251 Systems Analysis of the Nuclear Fuel Cycle Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.