Exercise 4. Partial Differential Equations.

1. Determine whether the following partial differential equations, in which p and q are arbitrary real constants, are elliptic, parabolic, or hyperbolic.

(a)
$$p^2 \frac{\partial^2 \psi}{\partial x^2} + q^2 \frac{\partial^2 \psi}{\partial y^2} = 0$$

(b) $(p \frac{\partial}{\partial x} + q \frac{\partial}{\partial y})(p \frac{\partial}{\partial x} - q \frac{\partial}{\partial y})\psi = 1$
(c) $\frac{\partial^2 \psi}{\partial x^2} + 4 \frac{\partial^2 \psi}{\partial x \partial y} + \frac{\partial^2 \psi}{\partial y^2} = 0$
(d) $\frac{\partial^2 \psi}{\partial x^2} + 2 \frac{\partial^2 \psi}{\partial x \partial y} + \frac{\partial^2 \psi}{\partial y^2} = \psi$
(e) $\frac{\partial^2 \psi}{\partial x^2} + p \frac{\partial \psi}{\partial y} = \psi$
(f) $\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} = x$
(e) $px \frac{\partial \psi}{\partial x} + q \frac{\partial \psi}{\partial y} = 1$

2. Write a computer code function¹ to evaluate the difference stencil in two dimensions for the anisotropic partial differential operator, $\mathcal{L} = 4\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$. The code function is to operate on a quantity $f(x, y) = f_{ij}$, represented as a matrix of the values at discrete points on a structured, equally-spaced, 2-D mesh with N_x and N_y nodes in the x and y directions, spanning the intervals $0 \leq x \leq L_x$, $0 \leq y \leq L_y$. The function should accept parameters $N_x, N_y, L_x, L_y, i, j, f$ and return the corresponding finite-difference expression for $g_{ij} = \mathcal{L}f$ at mesh point i, j.

Write also a test program to construct $f(x, y) = (x^2 + y^2)$ on the mesh nodes, giving f_{ij} , and call your stencil function, with f and the corresponding N_x, N_y, L_x, L_y as arguments, to evaluate g_{ij} and print it.

Submit the following as your solution:

- a. Your code in a computer format that is capable of being executed, citing the language it is written in.
- b. A brief answer to the following. Will your function work at the boundaries, $x = 0, L_x$, or $y = 0, L_y$? If not, what is needed to make it work there?
- c. The values of g_{ij} for four different nodes corresponding to two different interior *i* and two different interior *j*, when $N_x = N_y = 10$, $L_x = L_y = 10$.
- d. Brief answer to: Are there inefficiencies in using a code like this to evaluate $\mathcal{L}f$ everywhere on the mesh? If so, how might those inefficiencies be avoided?

¹For OO purists, this could be a "method".

22.15 Essential Numerical Methods Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.