Mapping Stability: Binary Phase Diagrams

22.14 – Intro to Nuclear Materials February 19 & 24, 2015

> Images from Engineering Materials Science, *Milton Ohring* unless otherwise noted

Major Steps

- Phase diagrams
- Reading phase diagrams
- Thermodynamics
- Free energy
- Free energy diagrams
- Constructing phase diagrams from free energy diagrams

Phase Diagram: Example

© Elsevier, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Phase Separation in Real Life

Image removed due to copyright restrictions. See Fig. 1 from http://cave.auburn.edu/rsrch-thrusts/lead-free.html for further details.

Examples: Complete Solubility

Binary phase diagrams from ASM Handbooks, Vol. 3 (available at vera.mit.edu)

Examples: Miscibility Gap

Examples: Intermetallics

Source: ASM Handbook, Volume 3: Alloy Phase Diagrams. Reprinted with permission of ASM International®.

Example Phase Diagrams

Examples: Eutectic, Everything!

Fe-C Phase Diagram

Basis for steelmaking

Most important one to remember & understand!

© Elsevier, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Fe-C Phase Diagram

A1: Temperature at which phase transformation from α-γ begins

A3: Temperature at which it ends

© Elsevier, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Fe-C Phase Diagram

Composition determines ending microstructure

Microstructure determines steel properties

© Elsevier, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© Elsevier, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Reading Phase Diagrams: The Lever Rule

Source: ASM Handbook, Volume 3: Alloy Phase Diagrams. Reprinted with permission of ASM International®.

Reading Phase Diagrams: The Lever Rule

Reading Phase Diagrams: The Lever Rule

$$C_0 = f_\alpha C_\alpha + (1 - f_\alpha) C_\beta$$

How much of each phase exists at the specified temperature?

What are the compositions of each phase?

license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Thermodynamics Review

Free Energy

Each component *i* has a tabulated, specific Gibbs free energy (ΔG_i)

– Lower ΔG_i indicates higher stability

Graphic by Shamsher Singh

Courtesy of UC Davis ChemWiki. License: CC by-nc-sa.

http://chemwiki.ucdavis.edu/Analytical_Chemistry/Elec trochemistry/Electrochemistry_and_Thermodynamics

Free Energy of Mixtures

Two parts:

- Atomic (mole) fractions of free energies
- Free energy from mixing

$$G_{tot} = X_A G_A + X_B G_B + \Delta G_{mix}$$

Nole fraction of component A
Gibbs free energy of component B

Ν

G(p,V) = U + pV - TS $\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$

Let's take a system of atoms (A & B) which totals one mole (N_{av}), with mole fractions $X_A \& X_B$:

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare.

Bond numbers before mixing:

$$\#_{A-A} = \frac{zN_{av}X_A}{2} \qquad \qquad \#_{B-B} = \frac{zN_{av}X_B}{2}$$

Bond numbers after mixing:

$$\#_{A-A} = \frac{zN_{av}(X_A)^2}{2} \qquad \#_{B-B} = \frac{zN_{av}(X_B)^2}{2} \qquad \#_{A-B} = zN_{av}X_AX_B$$

z = coordination number (# bonds / atom)

Next steps:

- Obtain energy before & after mixing
- Subtract to get change in mixing enthalpy

Examine available number of microstates...

Use the Boltzmann equation:

$$S = k_B \ln\left(\Omega\right)$$

$$G(p,V) = U + pV - TS$$

$$\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$$

$$\Delta H_{mix} = zN_{av}X_AX_B \left(E_{A-B} - \frac{E_{A-A} + E_{B-B}}{2}\right)$$

$$\Delta S_{mix} = -R \left[X_A \ln (X_A) + X_B \ln (X_B)\right]$$

Drawing Free Energy Diagrams of One *Phase*

What happens to the free energy when...

Drawing Free Energy Diagrams of One *Phase*

What about...

$\Delta H_{mix} > 0; \quad |\Delta H_{mix}| > |\Delta S_{mix}|$

Drawing Free Energy Diagrams of One *Phase*

Start with the free energy of the two separate components in one phase...

Add in the free energy of mixing...

Then superimpose all possible phases.

Drawing Free Energy Diagrams

Image: Q. Jiang, Z. Wen. "Thermodynamics Of Materials." Available through MIT Libraries at http://link.springer.com/book/10.1007/978-3-642-14718-0/page/1.

© Springer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Drawing Free Energy Diagrams of *Multiple Phases*

Examples:

- Solid/liquid solution
- Miscibility gap
- Eutectic (zero solubility)
- Eutectic (some solubility)
- Intermetallic (ordered) compound

Free Energy Diagrams to Phase Diagrams Inage: Q. Jiang, Z. Wen. "Thermodynamics Of Materials." Available through MIT

Libraries at http://link.springer.com/book/10.1007/978-3-642-14718-0/page/1.

© Springer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Two-Phase Region Criterion

Image: Q. Jiang, Z. Wen. "Thermodynamics Of Materials." Available through MIT Libraries at http://link.springer.com/book/10.1007/978-3-642-14718-0/page/1.

© Springer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

How will the phases form?

Nucleation & Growth

© The Department of Organic and Polymeric Materials, Tokyo Institute of Technology.All rights reserved. This content is excluded from our Creative Commons license.For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Spinodal Decomposition

This image is in the public domain. Wikimedia Commons

How will the phases form?

Phase Diagram: Spinodal Region

Courtesy of W. Craig Carter. Used with permission.

http://pruffle.mit.edu/~ccarter/3.21/Lecture_27/

Spinodal Decomposition Energy

Image: Q. Jiang, Z. Wen. "Thermodynamics Of Materials." Available through MIT Libraries at http://link.springer.com/book/10.1007/978-3-642-14718-0/page/1.

$$\frac{\partial^2 \Delta_{\min} G_{\mathrm{m}}}{\partial x_{\mathrm{B}}^2} = RT \left\{ \frac{1}{x_{\mathrm{B}}} + \frac{1}{(1-x_{\mathrm{B}})} \right\} - 2\omega = 0.$$

© Springer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

In-Class Example: W-Zr

Draw the Gibbs free energy diagram at 1000C

Source: ASM Handbook, Volume 3: Alloy Phase Diagrams. Reprinted with permission of ASM International®.

In-Class Example: W-Zr

22.14 – Intro to Nuclear Materials

Slide 44

MIT OpenCourseWare http://ocw.mit.edu

22.14 Materials in Nuclear Engineering Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.