
1

Brief Review of the R-Matrix Theory

L. C. Leal

Introduction

Resonance theory deals with the description of the nucleon-nucleus interaction and aims at
the prediction of the experimental structure of cross sections. Resonance theory is basically an
interaction model which treats the nucleus as a black box, whereas nuclear models are concerned
with the description of the nuclear properties based on models of the nuclear forces (nuclear
potential). Any theoretical method of calculating the neutron-nucleus interactions or nuclear
properties cannot fully describe the nuclear effects inside the nucleus because of the complexity of
the nucleus and because the nuclear forces, acting within the nucleus, are not known in detail.
Quantities related to internal properties of the nucleus are taken, in this theory, as parameters which
can be determined by examining the experimental results.

The general R-matrix theory, introduced by Wigner and Eisenbud in 1947, is a powerful
nuclear interaction model. Despite the generality of the theory, it does not require information about
the internal structure of the nucleus; instead, the unknown internal properties, appearing as elements
in the R-matrix, are treated as parameters and can be determined by examining the measured cross
sections. 

A brief review of the R-matrix theory will be given here and the interaction models which
are specializations of the general R-matrix will be described. The practical aspects of the general R-
matrix theory, as well as the relationship between the collision matrix U and the level matrix A with
the R-matrix, will be presented. 

Overview of the R-Matrix Theory

The general R-matrix theory has been extensively described by Lane and Thomas. An
overview is presented here as introduction for the resonance formalisms which will be described
later.

To understand the basic points of the general R-matrix theory, we will consider a simple case
of neutron collision in which the spin dependence of the constituents of the interactions is neglected.
Although the mathematics involved in this special case is over-simplified, it nevertheless contains
the essential elements of the general theory.

As mentioned before, the nuclear potential inside the nucleus is not known; therefore, the
behavior of the wave function in the internal region of the nucleus cannot be calculated directly from
the Schrödinger equation. In the R-matrix analysis the inner wave function of the angular
momentum l is expanded in a linear combination of the eigenfunctions of the energy levels in the
compound nucleus. Mathematically speaking, if is the inner wave function at any energy E
and  is the eigenfunction at the energy eigenvalue E8, the relation becomes
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Both  and  are solutions of the radial Schrödinger equations in the internal
region given by

and

Since all terms in this expression must be finite at , both functions vanish at that point.
In addition, the logarithmic derivative of the eigenfunction at the nuclear surface, say at , is
taken to be constant so that

where  is an arbitrary boundary constant.

Since we are dealing with eigenfunctions of a real Hamiltonian,  are orthogonal.
Assuming that  are also normalized, we have

From Eq. (xx-1) and the orthogonality condition, we find the coefficients ,
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To proceed to the construction of the R-matrix, Eq. (xx-2) is multiplied by and Eq.
(xx-3) is multiplied by . Subtracting and integrating the result over the range  to  (as in
Eq. (xx-6)) produces the expression for the coefficients :

Inserting  into Eq. (xx-1) for r=a at the surface of the nucleus and using Eq. (xx-4), gives
the following expression for the wave function:

Equation (xx-8) relates the value of the inner wave function to its derivative at the surface
of the nucleus. The R matrix is defined as

or

where , the reduced width amplitude for the level 8 and angular momentum l, is defined
as

The reduced width amplitude depends on the value of the inner wave function at the nuclear
surface. Both and are the unknown parameters of the R matrix which can be evaluated by
examining the measured cross sections.

The generalization of Eq. (xx-10) is obtained by including the neutron-nucleus spin
dependence and several possibilities in which the reaction process can occur. The concept of channel
is introduced to designate a possible pair of nucleus and particle and the spin of the pair. The
channel containing the initial state is called the entrance channel (channel c), whereas, the channel
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containing the final state is the exit channel (channel c’). The elements of the R matrix in the general
case are given by

where the reduced width amplitude becomes

The next objective is to relate the R-matrix to the cross-section formalism so that cross
sections can be computed once the elements of the R-matrix are known.

Relation between the R-matrix and the Collision Matrix U

The general expressions for the neutron-nucleus cross sections are based on the collision
matrix, also known as U-matrix, whose elements can be expressed in terms of the elements of the
R-matrix. From basic quantum mechanics theory the cross sections for the neutron-nucleus
interaction can be given as a function of the matrix U as follows:

(1) Elastic Cross Section

(2) Reaction Cross Section which includes everything which is not elastic scattering (i.e.,
reaction=fission, capture, inelastic, ...)

3) Total Cross Section 

where  is the neutron reduced wavelength given by
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 for r $ a ,        (18)
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(20)

(21)

We first derive the relationship between the U and R matrices, for a simple case of spinless
neutral particles. The total wave function in the region outside the nuclear potential can be expressed
as a linear combination of the incoming and outgoing wave functions. If and  are the
incoming and outgoing wave functions for a free particle, respectively, the solution of the radial
Schrödinger equation can be written as

where  is a normalization constant.

The presence of the U-matrix in Eq. (xx-18) (in this case a matrix of one element) indicates
that the amplitudes of the incoming and outgoing wave functions are, in general, different. The case
of  corresponds to pure elastic scattering which means that no reaction has occurred.

The Schrödinger equation for  and  is the same as Eq. (xx-2) with 
since the potential outside the nucleus is zero. The solution is a combination of the spherical Bessel
( ) and Neumann ( ) functions

and

where . 

The relation between the U and the R-matrices is obtained by first noting that Eq. (xx-8) can
be written as

where  is given in Eq. (xx-9).
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Equation (xx-21), when combined with Eq. (xx-18), provides the relation between R and U-
matrices as

We define the logarithmic derivative as

Since from Eqs. (xx-19) and (xx-20),  and  are complex conjugates,

Equation (xx-22) becomes

Equation (xx-25) represents the desired relationship between the collision matrix U and the matrix
R.

The representation of the neutron cross sections will depend on the reduced width amplitudes
 and  which are unknown parameters of Eq. (xx-25). Those parameters are obtained by fitting

the experimental cross section.

The general relation between the matrices U and R is similar to Eq. (xx-25) with each term
converted to matrix form:
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All matrices in Eq. (xx-26) are diagonal except the R matrix. The matrix elements of 
are given by .

It should be noted that no approximation was used in deriving Eq. (xx-26). That equation
represents an exact expression relating U and R, and leads to the determination of the cross section
according to Eqs. (xx-14, xx-15, and xx-16). 

To avoid dealing with matrices of large dimensions, several approximations of the R-matrix
theory have been introduced. We will discuss various of these cross-section formalisms in the pages
to come; we begin by introducing the level matrix A.

Relation between U, R, and A

Another presentation of Eq. (xx-26) may be obtained by introducing the following definitions

and

where S and P are real matrices which contains the shift and the penetration factors, respectively
and  .

From Eqs. (xx-20, xx-23, and xx-27), the penetration factors can be written as
, and Eq. (xx-26) becomes

with .

It should be realized that the R-matrix is a channel matrix; i.e. it depends on the entrance and
outgoing channels c and c’. The level matrix concept introduced by Wigner attempts to relate the
U matrix to a matrix in which the indices are the energy levels of the compound nucleus, the level
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matrix of elements . In relating the channel matrix to the level matrix we recall that the R matrix
is defined as

where  indicates the direct product between two vectors. 

The expression  can be written as

where we have defined , and  is a symmetric matrix. The form of Eq. (xx-32) suggests
the following relation

where the indices  and  refer to energy levels in the compound nucleus and A is determined as
follows:

Multiplying Eqs. (xx-32) and (xx-33) and using the identity , we
obtain the following expression,

Factoring the term  in the above equation, we find that the level matrix  satisfies the
equation

The evaluation of the matrix  which appears in Eq. (xx-30) is obtained by
combining Eqs. (xx-31) and (xx-33) which gives
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Using Eq. (xx-35) as  gives

Hence, the collision matrix is related to the level matrix as

The elements of the collision matrix for entrance and exit channels c and c’, respectively,
are given as

where

is the level width, and from Eq. (xx-35) the level matrix is

It should be remembered that no approximation has been introduced in the formal derivation
of the collision matrix up to this point.

Simplified Models Derived from the General R-Matrix Theory
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In this session we will present the approximations introduced to the R-matrix and, likewise,
to the level matrix A which leads to various simplified resonance formalisms. The cross section
formalisms frequently used are the single-level Breit-Wigner (SLBW), the Multilevel Breit-Wigner
(MLBW), the Adler-Adler (AA), and the Reich-Moore (RM) formalism (also known as the reduced
R-matrix formalism). A new methodology, called multipole representation of the cross section, was
developed at Argonne National Laboratory by R. N. Hwang; in this approach the cross section
representation is done in the momentum space ( ). We will address the approximations needed
to obtain these simplified R-matrix models.
 

 The starting points in deriving these formalisms will be the level matrix A and its relation
to the collision matrix U.

The collision matrix is given by

The level matrix is represented as

1. Multilevel Breit-Wigner (MLBW) Formalism

In the MLBW approximation the level matrix is assumed to be diagonal, which means that
the off-diagonal elements of the second term in the matrix given in Eq. (xx-43) are neglected, i.e.,
 

Hence Eq. (xx-43) becomes

From Eqs. (xx-27) and (xx-40) we have  and , which leads to
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where  (energy shift factor for the MLBW) and . Redefining

, the level matrix becomes

The collision matrix given by Eq. (xx-42) becomes

From this point, we proceed to the derivation of the cross section formalism in the MLBW
representation. For a reaction in which  (fission, capture, or inelastic scattering channels) the
collision matrix and the reaction cross section are given respectively by

and

where we have used the identity  in Eq. (xx-49). Inserting Eq. (xx-49) into Eq. (xx-50) gives



12
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where we have made  and . This expression can be further modified by
using the following identity

which gives 

where . The second term in Eq. (xx-53) is the complex conjugate of the first
term, hence

The term in the summation on  can be expanded to give

where

and the line shapes  and  are defined as

and
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Equation (xx-55) is the MLBW cross section form for the reaction cross section. A similar
procedure can be followed to derive the elastic cross section.

2. Single Level Breit-Wigner (SLBW) Formalism

The SLBW cross section formalism is a particular case of Eq. (xx-55) when the second term
in Eq. (xx-56) is zero, that is, .

3. Adler-Adler (AA) Formalism

The AA approximation consists of applying an orthogonal complex transformation which
diagonalizes the level matrix as given in Eq. (xx-43). We are looking for a transformation such that
 

or

where . Here  is a orthogonal complex matrix and  is a diagonal matrix of
complex elements. The elements of the matrix in Eq. (xx-60) are given as

The collision matrix of Eq. (xx-42) then becomes

where  and . The elements of the  matrix are determined from
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where Eq. (xx-43) has been used.

Because of the energy dependence of  through the penetration factor , the elements
 will, in general, be energy-dependent. In the AA approach, the energy dependence of  is

neglected. This assumption works very well for fissile isotopes where the resonance region is
predominantly described by s-wave resonances (angular momentum corresponding to ) for
which the penetration factor is energy independent. However, the assumption breaks down when p-
wave ( ) or other neutron partial wave functions with angular momentum greater than 1 are
present. 

The reaction cross section in the AA formalism can be obtained in a similar way to that
developed for the MLBW. The result is

where the following definitions were made

and

4. Reich-Moore Formalism

The approach proposed by Reich and Moore for treating the neutron-nucleus cross sections
consists of eliminating the off-diagonal contribution of the photon channels. The rationale for this
assumption is this: systematic measurements of the resonance widths, mainly in the case of the
neutron and fission widths, show strong fluctuations among resonances of the same total angular
momentum and parity. It should be expected, from Eq. (xx-40), that these fluctuations are connected
either to the reduced widths  or to the penetration factors . However, it is improbable that such



15

(67)

(68)

(69)

(70)

(71)

fluctuations are due to the penetration factors because they are either constant or a smooth function
of the energy. Hence, the fluctuations must be related to the reduced widths. Porter and Thomas
noted that the reduced widths  of Eq. (xx-13) are functions of the channel functions 
which, in turn, are projections of the eigenfunctions of the compound nucleus onto the nuclear
surface and exhibit random size variations. Consequently, the large number of gamma channels
implies that  is very small for . The second term of the level matrix in Eq. (xx-43)
is divided in two parts as

and in the RM approximation

The level matrix becomes

where, similarly to the MLBW, the following definitions were made:

 (Energy shift factor), and . Note that these quantities are

different from that in the MLBW formalism. Again, redefining  we have

From this point we are going to derive a relation between the collision and the level matrix
in the RM representation. Multiplying Eq. (xx-70) by  and summing over  gives
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(73)

(74)

(75)

(76)

(77)

Multiplying Eq. (xx-71) on the left by  and on the right by  and summing over  and 
gives

If we define

and

then Eq. (xx-72) becomes

Note that this R matrix is an approximation, not to be confused with the exact R-matrix defined
earlier.

Rearranging Eq. (xx-75) gives

Hence, from Eq. (xx-42) the collision matrix in the RM approximation becomes
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Equation (xx-77) relates the collision matrix to the Reich-Moore R-matrix in a form similar
to that in the case of the general R-matrix theory. In the general R-matrix, the elements are

whereas in the RM approximation they are

Equation (xx-79) is frequently referred to as the reduced R-matrix theory.

We now proceed to obtain a form for the cross section in the RM approximation, by writing
Eq. (xx-77) as

where

It is useful to write the reduced R-matrix as

in which the elements of K are given by

The explicit form of  is 
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Therefore  becomes

Recalling that  and making , the expression for  becomes

The matrix form of Eq. (xx-86) is

Equation (xx-87) can be further reduced by using the identity .
Letting , ,  and  we have

If we then add and subtract  the expression becomes,

for which the elements are, explicitly,

The collision matrix of Eq. (xx-80) then takes the form
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(95)

(96)

(97)
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where the elements of  are given as

The RM cross sections are written in terms of the transmission probability, defined as

for which the collision matrix can be written as 

The cross sections can then be obtained by using Eqs. (xx-14), (xx-15), and (xx-16) as,

and

5. Conversion of RM parameters into AA parameters
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A procedure to convert RM parameters into an equivalent set of AA parameters was
developed by DeSaussure and Perez. Their approach consisted of writing the RM transmission
probabilities  and  as the ratio of polynomials in energy; these polynomials can then be
expressed in terms of partial fraction expansions by matching the AA cross sections as:

and 

where

and .

Equations (xx-99) and (xx-100) have poles  which are roots of the equation
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and are identifiable as the parameters of the Adler-Adler formalism. In deriving this methodology
DeSaussure and Perez neglected the energy dependence of the neutron widths, i.e., . This
assumption limits the application of this methods to s-wave cross section. Hwang has extended the
application of the DeSaussure and Perez approach to the calculation of cross sections for any angular
momentum. In his approach, instead of using energy space, Hwang noted that the dependence of 
on  suggests that an expansion in terms of  would lead to a rigorous representation of the
cross section. Since momentum is proportional to , Hwang calls his methodology a rigorous pole
representation in the momentum space or, for short, a multipole representation of the cross sections
(MP). The transformation of the RM parameters into the MP parameters is obtained as

and

where

and  is the number of resonance parameters in the RM representation. The factor  of Eq. (xx-
104) becomes

where

and
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Doppler Broadening and Effective Cross Sections 

The Doppler broadening of cross sections is a well-known effect which is caused by the motion
of the atoms of the target nuclei. Since the target nuclei are not at rest in the laboratory system,
the neutron-nucleus cross section will depend on the relative speed of the neutron and the
nucleus. The effective cross section for mono-energetic neutrons of mass m and energy E
(laboratory velocity v) is given by the number of neutrons per unit volume, multiplied by the
number of target nuclei per unit volume, times the probability that a reaction will occur per unit
time at an energy equivalent to the relative velocity | v! W |, integrated over all values of W, the
velocity of the nucleus. The relation between the cross section measured in the laboratory and
the effective cross section is

where  is the effective or Doppler-broadened cross section for incident particles with
speed v [laboratory energy mv2/2]. The distribution of velocities of the target nuclei is described
by . A major issue is the choice of the appropriate velocity distribution function of the
target nuclei. Let us now assume that the target nuclei have the same velocity distribution as the
atoms of an ideal gas; i.e. the Maxwell-Boltzmann distribution,

where M is the nuclear mass and kT the gas temperature in energy units. Combining Eqs. (xx-
113) and (xx-114) gives

Note that, from the above definitions, a 1/v cross section remains unchanged.

Changing the integration variable from  and choosing spherical
coordinates simplifies the integral to the following:
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This equation, known as the Solbrig’s kernel, may be more familiar when written as the sum of
two integrals,

At sufficiently high energies, the contribution from the second integral may be omitted since the
value of the exponential is vanishingly small.

To simplify Eq. (xx-117) further, we make the following definition:

Equation (xx-117) then becomes
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For programming convenience, we make a change of variable from velocity to square
root of energy. Thus instead of v we use

we redefine W to be

and define U as

In addition, S(W) is set equal to s(w), or

These changes give the formulation which is used in SAMMY for the exact monatomic
free gas model (FGM):

These equations hold for 1/v cross sections, for constant cross sections, and for cross sections
with resonance structure.

To transform to the high-energy Gaussian approximation (hereafter referred to as HEGA)
from the FGM, define E as V 2 and EN as W 2. Then Eq. (xx-124) takes the form



25

(126)

(127)

(128)

in which the lower limit has been changed from -4 to Emin, a number above zero, since the next
step involves approximations which are valid only for EN >> 0. If we expand the integrand of Eq.
(xx-125) in powers of (E-E’) for values of E’/E close to 1 and set , then

Defining  (Doppler width) as

(Note that this quantity is energy-dependent) then the HEGA becomes

where the lower limit was extended to negative infinity since that portion of the integrand is
essentially zero. This is the usual Gaussian formulation of the free gas model.

Other Energy-Dependent Cross Sections

No discussion of Doppler broadening would be complete without an analysis of the
effects of Doppler broadening on particular types of cross sections. Here we examine some
important types of energy dependencies.

Doppler Broadening of 1/v Cross Sections

Doppler broadening is expected to preserve (i.e., leave unchanged) a 1/v-cross section.
To test whether this is the case with FGM and/or HEGA broadening, we note that a 1/v-cross
section may be expressed as
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(132)

where the subscript “0” denotes constants. To evaluate the FGM with this type of cross section,
note that our function S of Eq. (xx-123), combined with Eq. (xx-129), gives

From Eq. (xx-11) the FGM-broadened form of the 1/v cross section is therefore

i.e., in the exact same mathematical form as the original of Eq. (xx-129). In other words, a 1/v
cross section is conserved under Doppler broadening with the free gas model.

That is not the case for HEGA broadening. With the HEGA from Eq. (xx-128), the
Doppler-broadened 1/v cross section takes the form

which is not readily integrable analytically. What is clear is that the result is not 1/v.

Doppler Broadening of a Constant Cross Section

In contrast to the 1/v cross section, a constant cross section is not conserved under
Doppler broadening. That it is true experimentally can be seen by examining very low energy
capture cross sections, for which the unbroadened cross section is constant (which can be shown
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by taking the low-energy limit of the Reich-Moore equations, for example) but the experimental
cross section rises with decreasing energy. See, for example, the S elastic cross section from 0.01
to 1.0 eV or the Cu elastic cross section below 2.0 eV (on pages 100 and 234, respectively, of
[VM88]), which clearly rise with decreasing energy.

To calculate analytically what effect FGM and HEGA broadening have upon a constant
cross section, we first note that a constant cross section can be expressed as

The function S needed for our formulation of FGM broadening (see Eq. (xx-123)) is
found to be

so that Eq. (xx-124) gives, for the FGM-broadened constant cross section,

Replacing (W-V) / U by x gives
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in which we have replaced V/U by v. 

In the limit of small v, the quantity in Eq. (xx-6) becomes 

so that the leading term is 1/v; this is somewhat counterintuitive but is nevertheless observed in
measured low-energy cross sections. For large values of v, the limiting case is
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i.e., the broadened cross section is a constant, as expected.

In contrast, HEGA broadening preserves a constant cross section everywhere:

that is, the Gaussian kernel is normalized to unity, as expected. This result, which may
intuitively appear to be correct, is nevertheless unphysical. As discussed above, It is well known
that measured (and therefore Doppler-broadened) cross sections exhibit 1/v behavior at very low
energies.

Doppler Broadening of the Line Shapes  and 

Equations (xx-57) and (xx-58) can be written as

and

where .

The HEGA of these functions are obtained by replacing  in Eq. (xx-128) by  and
, which gives

and
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where .
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