Resonance Theory

Basics

- Deals with the description of nucleusnucleus interaction and aims at the prediction of the experimental structure of cross-sections
- Interaction model which treats the nucleus as a black box
 - Potential is unknown so models cannot predict accurately
 - Only care at what can be observed before and after a collision

R-matrix theory

- Introduced by Wigner and Eisenbud (1947)
- Requires no information about internal structure of the nucleus
- It is mathematically rigorous
 - Usually approximated
 - Most physical and appropriate of resonance framework
- Cross-sections are parametrized in terms of
 - Interaction radii & boundary condition
 - Resonance energy & widths
 - Quantum number (angular momentum, spin, ...)

Why bother?

- Couldn't we just use the measured data?
 - Too much information, too little understanding
 - x.s. vs energy would requires 100,000's of experimental points
 - Angular distributions would require even more
 - Need for extrapolation
 - Different energies
 - Temperature changes
 - Geometry considerations (self-shielding, ...)
 - Unstable or rare nuclides

R-matrix theory Assumptions

- Applicability of non-relativistic quantum mechanics
- Unimportance of processes where more than two product nuclei are formed
- Unimportance of all processes of creation or destruction
- Existence of a finite radial distance beyond which no nuclear interaction occurs
- Based on the notion that we can describe accurately what's far enough from the compound nucleus but not what's inside

Definition

- R-matrix is called a channel-channel matrix
- Channel
 - Designates a possible pair of nucleus and particle and the spin of the pair
 - Incoming channel (c)
 - Outgoing channel (c')
 - Defined by pair of particles, mass, charge, spin
 - Many possible channels exist

^{4.1 - 9}

- Incoming channel (c)
 - We can control the incoming channel by the way we set up the experiment
 - Neutron energy
 - Target
- Outgoing channel (c')
 - We can observe the outgoing channel with precise measurement

Total spin of the channel

- Required: conservation of spin and parity
 - (spin of incident channel = $J^{\pi} = J'^{\pi}$ = spin of exit channel)

Angular momentum addition rules

(for those unfamiliar with vector algebra)

If vector spin \vec{a} is given by

$$\vec{a} = \vec{b} + \vec{c}$$

then *a* (the magnitude of) \vec{a} is within the limits

$$|b-c| \le a \le b+c$$

and a is either integer

(if b and c are both integer or both half-integer)

or half-integer

(if one of b and c is integer and the other half-integer)

Table shows angular momentum summations for 0, 1/2, 1, 3/2, and 2

b	С	a = b + c
0	0	0
0	1/2	1/2
0	1	1
0	3/2	3/2
0	2	2
1/2	1/2	0,1
1/2	1	1/2,3/2
1/2	3/2	1,2
1/2	2	3/2,5/2
1	1	0,1,2
1	3/2	1/2,3/2,5/2
1	2	1,2,3
3/2	3/2	0,1,2,3
3/2	2	1/2,3/2,5/2,7/2
2	2	0,1,2,3,4

Cross-section

- In 22.101, you used the phase shift theory to determine an expression for the scattering cross-section
 - This expression can be defined in terms of the collision matrix U

$$\sigma = (\pi / k^2) \sin^2 \delta = (\pi / k^2) | 1 - U |^2$$
.

Different relations between x.s and U exist for other interaction type

Goal of R-matrix

- Phase shift theory requires knowledge of the potential V(r)
 - Approximated by square well
- R-matrix theory builds a relationship between a matrix R that depends only on observable, measurable quantities and the collision matrix
 - Bypasses the need for the potential
 - Requires experimental data
- We will derive a simplistic case of a neutron interaction with no spin dependence

R-Matrix Derivation

 Start with the steady-state Schrödinger equation with a complex potential

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V\right)\psi = E\psi$$

– Eigenvalue problem

The wavefunction is expressed in the form of partial waves

$$\psi(r,\cos\theta) = \sum_{l=0}^{\infty} \frac{\varphi_l(r)}{r} P_l(\cos\theta)$$

In radial geometry, the moment is a solution of the following equation

(1)
$$\left\{\frac{d^2}{dr^2} + \frac{2m}{\hbar^2}\left[E - V(r) - \frac{l(l+1)\hbar^2}{2mr^2}\right]\right\} \phi_l(E,r) = 0$$

 Additionally, the moment can be represented by an expansion in terms of the eigenvectors of the solution

$$\phi_l(E,r) = \sum_{\lambda} A_{l\lambda} \phi_l(E_{\lambda},r) \ .$$

Eigenvectors are also solutions of the above equation

• Eigenvectors are also a solution of:

(2)
$$\left\{\frac{d^2}{dr^2} + \frac{2m}{\hbar^2}\left[E_{\lambda} - V(r) - \frac{l(l+1)\hbar^2}{2mr^2}\right]\right\} \phi_l(E_{\lambda}, r) = 0 .$$

- Boundary conditions
 - Both equations must be finite at r = 0
 - Logarithmic derivative at nuclear surface is taken to be constant (where B_l is real)

$$\left[\frac{d\phi_l(E_{\lambda},r)}{dr}\right]_{r=a} = a^{-1}B_l\phi_l(E_{\lambda},a) ,$$

 The eigenvectors form a basis set, if normalized properly, they have the following property:

$$\int_{0}^{a} \phi_{l}(E_{\lambda},r) \phi_{l}(E_{\lambda'},r) dr = \delta_{\lambda\lambda'} .$$

– They form an orthonormal basis set

 From this condition, the expansion coefficients can be defined as:

$$A_{l\lambda} = \int_{0}^{a} \phi_{l}(E_{\lambda}, r) \phi_{l}(E, r) dr$$

- Our goal is to eliminate the potential V(r)
 - Multiply eq (1) by the eigenvector and multiply eq (2) by the moment
 - Subtract resulting equations
 - Integrate between 0 and a
 - Result: Gives an expression for $\phi_{l}(E_{\lambda},r) \phi_{l}(E,r)$
 - Which can be used to find the expansion coefficients

$$A_{l\lambda} = \frac{\hbar^2}{2m} (E_{\lambda} - E)^{-1} \left[\phi_l(E_{\lambda}, r) \frac{d\phi_l(E, r)}{dr} - \phi_l(E, r) \frac{d\phi_l(E_{\lambda}, r)}{dr} \right]_{r=a}$$

 We can now find an expression for the moment at r = a

$$\phi_l(E,a) = \frac{\hbar^2}{2ma} \sum_{\lambda} \left[\frac{\phi_l(E_{\lambda},a) \phi_l(E_{\lambda},a)}{E_{\lambda} - E} \right] \left[r \frac{d\phi_l(E,a)}{dr} - B_l \phi_l(E,r) \right]_{r=a}$$

 Where we can extract a definition of the Rmatrix

$$R_{l} = \frac{\hbar^{2}}{2ma} \sum_{\lambda} \left[\frac{\Phi_{l}(E_{\lambda},a) \Phi_{l}(E_{\lambda},a)}{E_{\lambda} - E} \right]$$

Or more commonly

$$R_{l} = \sum_{\lambda} \frac{\gamma_{\lambda l} \gamma_{\lambda l}}{E_{\lambda} - E}, \qquad \gamma_{\lambda l} = \sqrt{\frac{\hbar^{2}}{2ma}} \phi_{l}(E_{\lambda}, a)$$

- $-\gamma_{\lambda l}$ is the reduced width amplitude for level λ and angular momentum *l*
- $-\lambda$ is the resonance
- $-E_{\lambda}$ is the energy at the resonance peak
- $-\gamma_{\lambda l}$'s and E_{λ} 's are unknown parameters and can be evaluated by observing measured cross-sections
 - E_{λ} is the energy value at the peak
 - $\gamma_{\lambda l}$ is a measure of the width of the resonance at a certain amplitude for the nuclei at rest
 - Related to the more common Γ through a matrix transform
 - Not easy to measure because of temperature effects (Doppler)
 - Usually inferred from the resonance integral

General Form

$$R_{cc'} = \sum_{\lambda} \frac{\gamma_{\lambda c} \gamma_{\lambda c'}}{E_{\lambda} - E} ,$$

$$\gamma_{\lambda c} = \sqrt{\frac{\hbar^2}{2m_c a_c}} \, \phi_c(E_{\lambda}, a_c) \, .$$

Advantages/Disadvatages of R-matrix theory

- Disadvantages
 - Matrix inversion is always required
 - Channel radii and boundary condition appear arbitrary
 - Difficult to accommodate direct reactions (i.e. potential scattering)
- Advantages
 - Channel radii and boundary condition have natural definitions which makes them appealing
 - Reduced width concept has an appealing relation to nuclear spectroscopy

Boundary conditon

- In the early days, there was much confusion in the choice of channel radii and boundary condition
 - This topic has been debated heavily over the last 40 years!
 - Early papers described their choice as arbitrary
 - Optical model has facilitated the choice of these parameters
- "Natural" choices exist
 - Described in more details in pdf R-matrix theory (2)
 - $-B_{l}$ must be kept real to preserve the nature of the eigenvalue problem
 - Choice of boundary condition is to set it equal to the shift function at some point in the energy interval of measurement.
 - Keep only real part of the logarithmic derivative of the outgoing wave
 - Matching radii usually selected based on square-well interaction

Relation with collision matrix

- We found an expression for the solution of the wavefunction that doesn't depend on the potential
 - Depends on R-matrix
 - R-matrix depends on experimentally measured data
- Total wave function in region outside nuclear potential interaction can be expressed as a linear combination of the incoming and outgoing waves

$$\Phi_l(r) = C_l \left[\Phi_l^{inc}(r) - U_l \Phi_l^{out}(r) \right] \qquad \text{for } r \ge a ,$$

From R-matrix analysis, we found

$$\phi_l(E,a) = \left[r \frac{d\phi_l(E_{\lambda},a)}{dr} - B_l \phi_l(E,r) \right]_{r=a} R_l ,$$

• We can then find that

$$U_{l} = \left(\frac{\Phi_{l}^{inc}}{\Phi_{l}^{out}}\right)_{r=a} \frac{1 - \left[\left(\frac{r}{\Phi_{l}^{inc}}\frac{d\Phi_{l}^{inc}}{dr} - B_{l}\right)_{r=a}\right]R_{l}}{1 - \left[\left(\frac{r}{\Phi_{l}^{out}}\frac{d\Phi_{l}^{out}}{dr} - B_{l}\right)_{r=a}\right]R_{l}} .$$

Defining

$$L_l^* = \left(\frac{r}{\Phi_l^{out}} \frac{d\Phi_l^{out}}{dr}\right)_{r=a} \cdot L_l = \left(\frac{r}{\Phi_l^{inc}} \frac{d\Phi_l^{inc}}{dr}\right)_{r=a}$$

٠

• We get

$$U_{l} = \left(\frac{\Phi_{l}^{inc}}{\Phi_{l}^{out}}\right)_{r=a} \frac{1 - (L_{l}^{*} - B_{l})_{r=a} R_{l}}{1 - (L_{l} - B_{l})_{r=a} R_{l}} .$$

General form

$$U = \rho^{1/2} \phi_{out}^{-1} [I - R(L - B)]^{-1} [I - R(\overline{L} - B)] \phi_{inc} \rho^{-1/2}$$

٠

No approximation has been made
– Exact representation between U and R

Level matrix

- The R-matrix is fairly small but fairly complex to built
- Wigner introduced a clearer representation called the A-matrix whose elements correspond to energy levels
 - A is much larger
 - But its parameters are clearly defined
 - Summation is over incoming channels

$$A_{\mu\lambda}^{-1} = (E_{\lambda} - E) \delta_{\mu\lambda} - \sum_{c} (\gamma_{\mu c} L_{0c} \gamma_{\lambda c}) .$$

A-matrix

- Very large
 - Corresponds to the total number of resonances
 - Symmetric matrix
 - Diagonal terms depend on each level independently
 - Off-diagonal terms are mixed terms that introduce the influence of different levels on each other

$$U_{cc'} = e^{-i(\phi_c + \phi_c)} \left[\delta_{cc'} + 2i P_c^{1/2} (\sum_{\mu\lambda} \gamma_{\lambda c} A_{\lambda \mu} \gamma_{\mu c'}) P_{c'}^{1/2} \right].$$

Multi-level Breit Wigner

- Neglecting off-diagonal terms yields the Breit Wigner approximation
 - Analyzing a single level at a time yields the Single level Breit Wigner (SLBW) approximation
 - Works well if resonances are well spaced
 - Originally developed by Wigner based on an analogy to the dispersion of light
 - In some cases, off-diagonal terms matter

$$A_{\lambda\mu}^{-1} = (E_{\lambda} - E - \sum_{c} L_{0c} \gamma_{\lambda c}^{2}) \,\delta_{\lambda\mu} \, , \qquad U_{cc'} = e^{-i(\phi_{c} + \phi_{c'} - \frac{\pi}{2})} \sum_{\lambda} \frac{\Gamma_{\lambda c}^{1/2} \Gamma_{\mu c'}^{1/2}}{E_{\lambda} - E - \frac{i}{2} \Gamma_{\lambda}} \,,$$

Reich Moore Formalism

- Current method of choice
 - Keeps most off-diagonal terms
 - Neglects impact of gamma channels
 - Measurements have shown that fluctuations between gamma channels at different levels must be small

$$\begin{split} \sum_{c} \gamma_{\lambda c} L_{0c} \gamma_{\mu c} &= \sum_{c \in \gamma} \gamma_{\lambda c} L_{0c} \gamma_{\mu c} + \sum_{c \notin \gamma} \gamma_{\lambda c} L_{0c} \gamma_{\mu c} , \qquad \sum_{c \in \gamma} \gamma_{\lambda c} L_{0c} \gamma_{\mu c} \approx \delta_{\mu \lambda} \sum_{c \in \gamma} L_{0c} \gamma_{\lambda c}^{2} \\ A_{\lambda \mu}^{-1} &= (E_{\lambda} - E + \Delta_{\lambda \gamma} - \frac{i}{2} \Gamma_{\lambda \gamma}) \delta_{\lambda \mu} + \sum_{c \notin \gamma} \gamma_{\lambda c} L_{0c} \gamma_{\mu c} , \end{split}$$

 MLBW is more restrictive than Reich Moore

- Poor treatment of multi-channel effects

SLBW is more restrictive than MLBW
– Can give negative cross-section values

Reich Moore vs SLBW (U235 fission)

- Solid line : SLBW
- Dotted line : RM

Fe-56: RM, MLBW, SLBW

- Solid line: RM
- Dashed line: MLBW
- Dotted line: SLBW

22.106 Neutron Interactions and Applications Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.