
Chapter 2 

Particle Motion in Electric and 
Magnetic Fields 

Considering E and B to be given, we study the trajectory of particles under the influence of 
Lorentz force 

F = q (E + v ∧ B) (2.1) 

2.1 Electric Field Alone 
dv 

m = qE (2.2) 
dt 

Orbit depends only on ratio q/m. Uniform E uniform acceleration. In one-dimension z,⇒
Ez trivial. In multiple dimensions directly analogous to particle moving under influence of 

qgravity. Acceleration gravity g 
m E. Orbits are parabolas. Energy is conserved taking ↔ 

z

x
__
m
qE

Figure 2.1: In a uniform electric field, orbits are parabolic, analogous to gravity. 

into account potential energy 

P.E. = qφ electric potential (2.3) 
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[Proof if needed, regardless of E spatial variation,


dv dφ 

d 
dt 

m 
dt 
.v � 

1 
2 
mv 2 

� 

= 

= 

−q�φ.v = −q 

− 
d 
dt 

(qφ) 

dt 
(2.4) 

(2.5) 

i.e. 1 mv2 + qφ 
2 = const.] 

A particle gains kinetic energy qφ when falling through a potential drop-φ. So consider 
the acceleration and subsequent analysis of particles electrostatically: How much deflection 

φ=0
a+φ  /2φ

E

L

Electrostatic Analyser
Particle
Source

Detecting
Screen

s

d

z

x

z0

a−φ  /2

Figure 2.2: Schematic of electrostatic acceleration and analysis. 

will there be? After acceleration stage KE = 1 mv2 = −qφs2 x 

vx = 
−2qφs 

. (2.6) 
m 

Supposing Ea, field of analyser, to be purely ẑ, this velocity is subsequently constant. Within 
the analyser 

dvz q q x 
m = qEa vz = Eat = Ea . (2.7) 
dt 

⇒ 
m m vx 

So 
q t2 q 1 x2 

z = vzdt = Ea = Ea . (2.8) 
m 2 m 2 v2 

x 

Hence height at output of analyser is 

q 1 L2 q 1 
L2 m 

zo = Ea = Ea 
m 2 v2 m 2 (−2qφs)x 

= −
4

1 E
φs

a 
L2 = + 

4

1 φ
φ

a

s 

L

d 

2 

(2.9) 
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using Ea = −φa/d. Notice this is independent of q and m! We could see this directly by 
eliminating the time from our fundamental equations noting 

dt

d 
= v

d�

d 
(= v.�) with v =

2q (φ
m 
− φs) 

or v = � 2

m

q 
φ − φs + 

E
q 
s 

(2.10) 
if there is initial energy Es. So equation of motion is � ⎛� ⎞ 
m 
q 

2q (φ − φs) 
m 

d 
d� 
⎝ 2q (φ − φs) 

m 
d 
d� 

x⎠ = 2 
� 
φ − φs 

d 
d� 

� 
φ − φs 

dx 
d� 

= Ea = −�φ , (2.11) 

which is independent of q and m. Trajectory of particle in purely electrostatic field depends 
only on the field (and initial particle kinetic energy/q). If initial energy is zero, can’t deduce 
anything about q,m. 

2.2 Electrostatic Acceleration and Focussing 

Accelerated charged particle beams are widely used in science and in everyday applications. 

Examples: 

X-ray generation from e-beams (Medical, Industrial) 
Electron microscopes 
Welding. (e-beam) 
Surface ion implantation 
Nuclear activation (ion-beams) 
Neutron generation 
Television and (CRT) Monitors 

For applications requiring < few hundred keV energy electrostatic acceleration is easiest, ∼
widest used. Schematically 

Source of

Electrons
or Ions

Sample

Target

or

φ φs t

Beam

Figure 2.3: Obtaining defined energy from electrostatic acceleration is straightforward in 
principle. Beam focussing and transport to the target is crucial. 
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Clearly getting the required energy is simple. Ensure the potential difference is right and 
particles are singly charged: Energy (eV ) Potential V. More interesting question: How ↔
to focus the beam? What do we mean by focussing? 

Object Image

Focal Point

(a) Optical Focussing

Lens

(b) Particle beam
      Focussing

Parallel Rays

Figure 2.4: Analogy between optical and particle-beam focussing. 

What is required of the “Lens”? To focus at a single spot we require the ray (particle 
path) deviation from a “thin” lens to be systematic. Specifically, all initially parallel rays 
converge to a point if the lens deviates their direction by θ such that 

r θ θ

Deviation Angle

Distance from axis

Parallel Rays
f

Figure 2.5: Requirement for focussing is that the angular deviation of the path should be a 
linear function of the distance from the axis. 

r = f tan θ (2.12) 

and for small angles, θ, r = −fθ. This linear dependence (θ = −r/f)) of the deviation θ, on 
distance from the axis, r, is the key property. Electrostatic Lens would like to have (e.g.) 

Ea
Er = r (2.13) 

a 

but the lens can’t have charged solids in its middle because the beams must pass through so 
(initially) ρ = 0 ⇒ �.E = 0. Consequently pure Er is impossible (0 = �.E = 1 ∂(rEr)/∂r = 

r 
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2Ea/a Ea = 0). For an axisymmetric lens (∂/∂θ = −0) we must have both Er and Ez.⇒
Perhaps the simplest way to arrange appropriate Er is to have an aperture between two 

E1
E2

Potential Contours

Figure 2.6: Potential variation near an aperture between two regions of different electric field 
gives rise to focussing. 

regions of unequal electric field. The potential contours “bow out” toward the lower field 
region: giving Er. 

Calculating focal length of aperture Radial acceleration. 

1 2

r

z

Figure 2.7: Coordinates near an aperture.


dvr q 
= Er (2.14) 

dt m 
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So 
dvr 

dz 
= 

1 
vz 

dvr 

dt 
= 

q 
m 
Er 

vz 
(2.15) 

But 

�.E = 0 ⇒ 
1 
r 
∂ (rEr) 
∂r 

+ 
∂Ez 

∂z 
= 0 (2.16) 

Near the axis, only the linear part of Er is important i.e. 

∂Er
Er(r, z) � r (2.17)


∂r

r=0 

r=0 

So

1 ∂ ∂Er

rEr � 2 
r ∂r 

(2.18)

∂r


and thus

∂Er ∂Ez

2
 +
 = 0 (2.19)

∂r
 ∂z 

r=0 

and we may write Er � −2
1 r∂Ez/∂z. Then 

dvr qr ∂Ez


dz 
= −

2mvz ∂z 
, (2.20)


which can be integrated approximately assuming that variations in r and vz can be neglected 
in lens to get 

final −qr 2δvr = [vr]initial = [Ez]1 (2.21) 
2mvz 

The angular deviation is therefore 

θ = 
−δvr 

=
+qr 

[Ez2 − Ez1] (2.22) 
vz 2mvz 

2 

and the focal length is f = r/θ 

f =
2mvz 

2 

=
4E 

(2.23) 
q (Ez2 − Ez1) q (Ez2 − Ez1) 

When E1 is an accelerating region and E2 is zero or small the lens is diverging. This means 
that just depending on an extractor electrode to form an ion beam will give a diverging 
beam. Need to do more focussing down stream: more electrodes. 

2.2.1 Immersion Lens 

Two tubes at different potential separated by gap In this case the gap region can be thought 
of as an aperture but with the electric fields E1, E2 the same (zero) on both sides. Previous 
effect is zero. However two other effects, neglected previously, give focussing: 

1. vz is not constant. 

2. r is not constant. 

Consider an accelerating gap: q(φ2 − φ1) < 0. 
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Extraction
Electrode

DivergingSource

Figure 2.8: The extraction electrode alone always gives a diverging beam.


φ φ

Region 1 Region 2
Tube

1 2

Figure 2.9: An Immersion Lens consists of adjacent sections of tube at different potentials. 

Effect (1) ions are converged in region 1, diverged in region 2. However because of z-
acceleration, vz is higher in region 2. The diverging action lasts a shorter time. Hence 
overall converging. 

Effect (2) The electric field Er is weaker at smaller r. Because of deviation, r is smaller 
in diverging region. Hence overall converging. 

For a decelerating gap you can easily convince yourself that both effects are still converging. 
[Time reversal symmetry requires this.] One can estimate the focal length as 

1 3

f 
�


16


�2 
q2 ∂φ 
E2 ∂z 

dz (for weak focussing) (2.24)

r=0 

but numerical calculations give the values in figure 2.10 where φ1 = E/q. Here E is the 
energy in region 1. Effect (2) above, that the focussing or defocussing deviation is weaker 
at points closer to the axis, means that it is a general principle that alternating lenses of 
equal converging and diverging power give a net converging effect. This principle can be 
considered to be the basis for 
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Figure 2.10: Focal length of Electrostatic Immersion Lenses. Dependence on energy per 
unit charge (φ) in the two regions, from S.Humphries 1986 

2.2.2 Alternating Gradient Focussing 

Idea is to abandon the cylindrically symmetric geometry so as to obtain stronger focussing. 
Consider an electrostatic configuration with Ez = 0 and 

dEx dEx
Ex = x with = const. (2.25) 

dx dx 

Since �.E = 0, we must have


dEx dEy dEy dEx 

dx 
+ 

dx 
= 0 ⇒ 

dy 
= const ⇒ Ey = − 

dx 
y (2.26) 

This situation arises from a potential 

� � 1 dEx
φ = x 2 2 (2.27) − y 

2 dx 

so equipotentials are hyperbolas x2 − y2 = const. If qdEx/dx is negative, then this field is 
converging in the x-direction, but dEy/dy = −dEx/dx, so it is, at the same time, diverging in 
the y-direction. By using alternating sections of +ve and -ve dEx/dx a net converging focus 
can be obtained in both the x and y directions. This alternating gradient approach is very 
important for high energy particle accelerators, but generally magnetic, not electrostatic, 
fields are used. So we’ll go into it more later. 
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2.3 Uniform Magnetic field


dv 
m = q (v ∧ B)	 (2.28) 
dt 

Take B in ẑ-direction. Never any force in ẑ-dir. vz = constant. Perpendicular dynamics ⇒ 
are separate. 

v̂  B

z
y

B

v

x

Figure 2.11: Orbit of a particle in a uniform magnetic field. 

2.3.1 Brute force solution: 

v̇x = 
q
vyB v̇y = 

−q
vxB	 (2.29) 

m	 m � �2	 � �2qB	 qB ⇒ v̈x = − 
m

vx v̈y = − 
m

vy	 (2.30) 

Solution 
qB	 qB 

vx = v sin t vy = v cos t 
m
m

qB m
m
qB , (2.31) 

x = −v cos t + x0 y = v sin t + y0
qB m qB m 

the equation of a circle. Center (x0, y0) and radius (vm/qB) are determined by initial 
conditions. 

2.3.2 ‘Physics’ Solution 

1. Magnetic field force does no work on particle because F ⊥ v. Consequently total |v|
is constant. 

2. Force is thus constant, ⊥ to v. Gives rise to a circular orbit. 

v2 F orce vB mv3. Centripetal acceleration gives	
r = 

mass = q 
m i.e. r = 

qB . This radius is called the 
Larmor (or gyro) Radius. 

4. Frequency of rotation v = qB ≡ Ω is called the “Cyclotron” frequency (angular fre
r m 

quency, s−1, not cycles/sec, Hz). 
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When we add the constant vz we get a helical orbit. Cyclotron frequency Ω = qB/m depends 
only on particle character q,m and B-strength not v (non relativistically, see aside). Larmor 
Radius r = mv/qB depends on particle momentum mv. All (non-relativistic) particles with 
same q/m have same Ω. Different energy particles have different r. This variation can be 
used to make momentum spectrometers. 

2.3.3 Relativistic Aside 

Relativistic dynamics can be written 

d 
dt

p = q ([E+] v ∧ B) (2.32) 

where relativistic momentum is 

p = mv = 
m0v � 
1 − v

2 

c2 

. (2.33) 

Mass m is increased by factor � � 1 
2v2 − 

γ = 1 − 
c2 

(2.34) 

relative to rest mass m0. Since for E = 0 the velocity |v| = const, γ is also constant, and 
so is m. Therefore dynamics of a particle in a purely magnetic field can be calculated as if 
it were non-relativistic: mdv/dt = q(v ∧ B), except that the particle has mass greater by 
factor γ than its rest mass. 

2.3.4 Momentum Spectrometers 

Particles passing vertically through slit take different paths depending on mv/q. By mea-

x

v

Different

Momenta

Unform
B

Slit Detection Plane

Figure 2.12: Different momentum particles strike the detection plane at different positions. 

suring where a particle hits the detection plane we measure its momentum/q : 

mv mv Bx 
2 
qB 

= x : 
q 

= 
2 

. (2.35) 
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Why make the detection plane a diameter? Because detection position is least sensitive 
to velocity direction. This is a form of magnetic focussing. Of course we don’t need to make 
the full 360◦, so analyser can be reduced in size. 

Unform
B v

Different

Momenta

Unform
B

Slit Detection Plane

(b)

v

Slit Focus

Different Angles

(a)

Detector ArrayEntrance

Figure 2.13: (a) Focussing is obtained for different input angles by using 180 degrees of orbit. 
(b) The other half of the orbit is redundant. 

Even so, it may be inconvenient to produce uniform B of sufficient intensity over sufficiently 
large area if particle momentum is large. 

2.3.5 Historical Day Dream (J.J. Thomson 1897) 

“Cathode rays”: how to tell their charge and mass? 

Electrostatic Deflection 

Tells only their energy/q = E/q and we have no independent way to measure E since the 
same quantity E/q just equals accelerating potential, which is the thing we measure. 

Magnetic Deflection 

The radius of curvature is 
mv 

r = (2.36) 
qB 

So combination of electrostatic and electromagnetic gives us 

1 2mv mv2 = M1 and = M2 (2.37) 
q q 

Hence 
2M1 q 
M2

2 = 
m
. (2.38) 

We can measure the charge/mass ratio. In order to complete the job an independent measure 
of q (or m) was needed. Millikan (1911-13). [Actually Townsend in J.J. Thomson’s lab had 
an experiment to measure q which was within ∼ factor 2 correct.] 
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2.3.6 Practical Spectrometer 

In fusion research fast ion spectrum is often obtained by simultaneous electrostatic and 
electromagnetic analysis E 

1 
parallel to B. This allows determination of E/q and q/m ⇒

velocity of particle [E = mv2]. Thus e.g. deuterons and protons can be distinguished. 
2 

y

x

B

E
Particle

y

x

Figure 2.14: E parallel to B analyser produces parabolic output locus as a function of input 
velocity. The loci are different for different q/m. 

qHowever, He4 and D2 have the same 
m so one can’t distinguish their spectra on the basis 

of ion orbits. 

2.4 Dynamic Accelerators 

In addition to the electrostatic accelerators, there are several different types of accelerators 
based on time-varying fields. With the exception of the Betatron, these are all based on the 
general principle of arranging for a resonance between the particle and the oscillating fields 
such that energy is continually given to the particle. Simple example 

1+ 2+ 2- 3+1- 3-

1 2 3

Figure 2.15: Sequence of dynamically varying electrode potentials produces continuous ac
celeration. Values at 3 times are indicated. 

Particle is accelerated through sequence of electrodes 3 at times (1) (2) (3). The potential 
of electrode is raised from negative to +ve while particle is inside electrode. So at each gap 
it sees an accelerating Ez. Can be thought of as a successive moving potential hill: 
“Wave” of potential propagates at same speed as particle so it is continuously accelerated. 
Historically earliest widespread accelerator based on this principle was the cyclotron. 
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Figure 2.16: Oscillating potentials give rise to a propagating wave.
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Figure 2.17: Schematic of a Cyclotron accelerator. 

2.4.1 Cyclotron 
qB Take advantage of the orbit frequency in a uniform B-field Ω = 
m . Apply oscillating 

potential to electric poles, at this frequency. Each time particle crosses the gap (twice/turn) 
it sees an accelerating electric field. Resonant frequency 

f =
Ω

= 
qB 

= 1.52 × 107B Hz (2.39) 
2π m2π 

15.2 MHz/T for protons. If magnet radius is R particle leaves accelerator when its Larmor 
radius is equal to R 

mv 
= R 

1 
mv 2 =

1 q2 

B2R2 (2.40) 
qB 

⇒ 
2 2 m 

If iron is used for magnetic pole pieces then B < ∼ 2T (where it saturates). Hence larger 
accelerator is required for higher energy E ∝ R2 . [But stored energy in magnet ∝ R2 → R3]. 
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2.4.2	 Limitations of Cyclotron Acceleration: Relativity 

Mass increase ∝ (1 − v2/c2)− 
2
1 

breaks resonance, restricting maximum energy to ∼25MeV 
(protons). Improvement: sweep oscillator frequency (downward). “Synchrocyclotron” al
lowed energy up to ∼500MeV but reduced flux. Alternatively: Increase B with radius. 
Leads to orbit divergence parallel to B. Compensate with azimuthally varying field for 
focussing AVF-cyclotron. Advantage continuous beam. 

2.4.3	 Synchrotron 

Vary both frequency and field in time to keep beam in resonance at constant radius. High 
energy physics (to 800 GeV). 

2.4.4	 Linear Accelerators 

Avoid limitations of electron synchrotron radiation. Come in 2 main types. (1) Induction 
(2) RF (linacs) with different pros and cons. (RF for highest energy electrons). Electron 
acceleration: v = c different problems from ion. 

2.5	 Magnetic Quadrupole Focussing (Alternating Gra

dient) 

Magnetic focussing is preferred at high particle energy. Why? Its force is stronger.

Magnetic force on a relativistic particle qcB.

Electric force on a relativistic particle qE.

E.g. B	 = 2T ⇒ cB = 6 × 108 same force as an electric field of magnitude 6 × 108V/m = 
0.6MV/mm! However magnetic force is perpendicular to B so an axisymmetric lens would 

ˆlike to have purely azimuthal B field B = θBθ. However this would require a current right 

vB

v  B^

Figure 2.18: Impossible ideal for magnetic focussing: purely azimuthal magnetic field. 

where the beam is: � 

B.d� = µoI. (2.41) 

Axisymmetric magnetic lens is impossible. However we can focus in one cartesian direction 
(x, y) at a time. Then use the fact that successive combined focus-defocus has a net focus. 
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2.5.1 Preliminary Mathematics 
∂Consider 
∂z = 0 purely transverse field (approx) Bx, By. This can be represented by B = 

�∧ A with A = ẑA so �∧ A = �∧ (ẑA) = −ẑ∧�A (since �ẑ = 0). In the vacuum region 
j = 0 (no current) so 

0 = �∧ B = �∧ (−ẑ ∧�A) = −ẑ�2A + (� ˆ�� � (2.42) z.�) �A 

=0 

i.e. �2A = 0. A satisfies Laplace’s equation. Notice then that solutions of electrostatic 
problems, �2φ = 0 are also solutions of (2-d) vacuum magnetostatic problems. The same 
solution techniques work. 

2.5.2 Multipole Expansion 

Potential can be expanded about some point in space in a kind of Taylor expansion. Choose 
origin at point of expansion and use coordinates (r, θ), x = r cos θ, y = r sin θ. 

1 ∂ ∂A 1 ∂2A �2A = 
r ∂r 

r 
∂r 

+ 
r ∂θ2 

= 0 (2.43) 
2 

Look for solutions in the form A = u(r).w(θ). These require 

d2w 
dθ2 

= −const. × w (2.44) 

and 
d du 

r r = const. × u. (2.45) 
dr dr 

Hence w solutions are sines and cosines 

w = cos nθ or sin nθ (2.46) 

where n2 is the constant in the previous equation and n integral to satisfy periodicity. 
Correspondingly 

u = r n or ln r , r−n (2.47) 

These solutions are called “cylindrical harmonics” or (cylindrical) multipoles: 

1 ln r 
rn cos nθ r−n cos nθ (2.48) 
rn sin nθ r−n sin nθ 

If our point of expansion has no source at it (no current) then the right-hand column is ruled 
out because no singularity at r = 0 is permitted. The remaining multipoles are 

1 constant irrelevant to a potential 
r cos θ(= x) uniform field, �A ∝ x̂
r2 cos 2θ = r2(cos2 θ − sin2 θ) = x2 − y2 non-uniform field 
Higher orders neglected. 
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The second order solution, x2 − y2 is called a “quadrupole” field (although this is something 
of a misnomer). [Similarly r3 cos 3θ “hexapole”, r4 cos θ “octupole”.] We already dealt →
with this potential in the electric case. � � 

�A = � x 2 − y 2 = 2xx̂ − 2yŷ . (2.49) 

So 
− ẑ ∧�A = −2xŷ − 2yx̂	 (2.50) 

Force on longitudinally moving charge: 

F	 = qv ∧ B = qv ∧ (�∧ A) (2.51) 

= qv ∧ (ẑ ∧�A) = −q (v.ẑ) �A ≡ −qvz�A (2.52) 

Magnetic quadrupole force is identical to electric ‘quadrupole’ force replacing 

φ Avz	 (2.53) ↔ 

Consequently focussing in x-direction defocussing in y-direction but alternating gradients ⇒
give net focussing. This is basis of all “strong focussing”. 

2.6 Force on distributed current density 

We have regarded the Lorentz force law 

F = q (E + v ∧ B)	 (2.54) 

as fundamental. However forces are generally measured in engineering systems via the in
teraction of wires or conducting bars with B-fields. Historically, of course, electricity and 
magnetism were based on these measurements. A current (I) is a flow of charge: Coulombs/s 
≡ Amp. A current density j is a flow of charge per unit area A/m2 . The charge is carried 
by particles: � 

j = niviqi (2.55) 
species i 

Hence total force on current carriers per unit volume is 

F = niqi (vi ∧ B) = j ∧ B (2.56) 
i 

Also, for a fine wire carrying current I, if its area is Ω, the current density averaged across 
the section is 

I 
j =	 (2.57) 

Ω 
Volume per unit length is Ω. And the force/unit length = j ∧ B.Ω = I × B perpendicular to 
the wire. 
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2.6.1 Forces on dipoles 

We saw that the field of a localized current distribution, far from the currents, could be 
approximated as a dipole. Similarly the forces on a localized current by an external magnetic 
field that varies slowly in the region of current can be expressed in terms of magnetic dipole. 
[Same is true in electrostatics with an electric dipole]. 

Total force 

F = j ∧ Bd3 x� (2.58) 

where B is an external field that is slowly varying and so can be approximated as 

B (x�) = B0 + (x�.�) B (2.59) 

where the tensor �B (∂Bj /∂xi) is simply a constant (matrix). Hence 

F = j ∧ Bo + j ∧ (x�.�B) d3 x� 

= jd3 x� ∧ Bo + j ∧ (x�.�B) d3 x� (2.60) 

The first term integral is zero and the second is transformed by our previous identity, which 
can be written as 

x ∧ (x� ∧ j) d3 x� = 2x. jx�d3 x� = −2x. x�jd3 x� (2.61) 

for any x. Use the quantity �B for x (i.e. xi ↔ ∂ Bj ) giving 
∂xi 

1 
2

(x� ∧ j) d3 x ∧�B = m ∧�B = j (x�.�) Bd3 x (2.62) 

This tensor identity is then contracted by an ‘internal’ cross-product [�ijkTjk] to give the 
vector identity � 

(m ∧�) ∧ B = j ∧ [(x�.�) B] d3 x (2.63) 

Thus 
F = (m ∧�) ∧ B = � (m.B) − m (�.B) (2.64) 

(remember the � operates only on B not m). This is the force on a dipole: 

F = � (m.B) . (2.65) 

Total Torque (Moment of force) 

is 

M = x� ∧ (j ∧ B) d3 x� (2.66) 

= j (x�.B) − B (x�.j) d3 x� (2.67) 
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B here is (to lowest order) independent of x�: B0 so second term is zero since � � 1 � � � � 
x�.jd3 x� =

2 
�. |x�|2j − |x�|2�.j d3 x� = 0. (2.68) 

The first term is of the standard form of our identity. 

1 
M = B. x�jd3 x� = −

2 
B ∧ (x� ∧ j) d3 x� (2.69) 

M = m ∧ B Moment on a dipole. (2.70) 

y

x

z
dx

dy I

Figure 2.19: Elementary circuit for calculating magnetic force. 

2.6.2 Force on an Elementary Magnetic Moment Circuit 

Consider a plane rectangular circuit carrying current I having elementary area dxdy = dA. 
Regard this as a vector pointing in the z direction dA. The force on this current in a field 
B(r) is F such that 

∂Bz
Fx = Idy [Bz (x + dx) − Bz (x)] = Idydx (2.71) 

∂x 
∂Bz

Fy = −Idx [Bz (y + dy) − Bz (y)] = Idydx (2.72) 
∂y 

Fz = −Idx [By (y + dy) − By (y)] − Idy [Bx (x + dx) − Bx (x)] 

∂Bx ∂By ∂Bz 
= −Idxdy 

∂x 
+ 

∂y 
= Idydx 

∂z 
(2.73) 

(using �.B = 0). Hence, summarizing: F = Idydx�Bz. Now define m = IdA = Idydxẑ
and take it constant. Then clearly the force can be written 

F = � (B.m) (2.74) 

or strictly (�B).m. 
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Figure 2.20: Moment on a bar magnet in a uniform field.
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Net Force:

B
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Figure 2.21: A magnetic moment in the form of a bar magnet is attracted or repelled toward 
the stronger field region, depending on its orientation. 

2.6.3 Example 

Small bar magnet: archetype of dipole. In uniform B feels just a torque aligning it with B. 
In a uniform field, no net force. 

Non-uniform field: If magnet takes its natural resting direction, m parallel to B, force is 

F = m�|B| (2.75) 

A bar magnet is attracted to high field. Alternatively if m parallel to minus B the magnet 
points other way 

F = −m�|B| repelled from high |B|. (2.76) 

Same would be true for an elementary circuit dipole. It is attracted/repelled according to 
whether it acts to increase or decrease B locally. A charged particle moving in its Larmor 
orbit is always diamagnetic: repelled from high |B|. 

2.6.4 Intuition 

There is something slightly non-intuitive about the “natural” behavior of an elementary wire 
circuit and a particle orbit considered as similar to this elementary circuit. Their currents 
flow in opposite directions when the wire is in its stable orientation. The reason is that 
the strength of the wire sustains it against the outward magnetic expansion force, while the 
particle needs an inward force to cause the centripetal acceleration. 
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Figure 2.22: Elementary circuit acting as a dipole experiences a force in a non-uniform 
magnetic field. 
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Figure 2.23: Difference between a wire loop and a particle orbit in their “natural” orientation. 

2.6.5	 Angular Momentum 

If the local current is made up of particles having a constant ratio of charge to mass: q/M 
say (Notational accident m is magnetic moment). Then the angular momentum is L = 

i Mixi ∧ v and magnetic moment is m = 1 qixi ∧ vi. So
2 

q 
m =	 L. “Classical” (2.77) 

2M 

This would also be true for a continuous body with constant (charge density)/(mass density) 
(ρ/ρm). Elementary particles, e.g. electrons etc., have ‘spin’ with moments m, L. However 
they do not obey the above equation. Instead 

q 
m = g L	 (2.78) 

2M 

with the Landé g-factor (� 2 for electrons). This is attributed to quantum and relativistic 
effects. However the “classical” value might not occur if ρ/ρm were not constant. So we 
should not be surprised that g is not exactly 1 for particles’ spin. 

2.6.6	 Precession of a Magnetic Dipole (formed from charged par
ticle) 

The result of a torque m ∧ B is a change in angular momentum. Since m = gLq/2M we 
have 

dL	 q 
= m ∧ B = g (L ∧ B))	 (2.79) 

dt	 2M 
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Figure 2.24: Precession of an angular momentum L and aligned magnetic moment m about 
the magnetic field. 

This is the equation of a circle around B. [Compare with orbit equation dv = q v ∧ B]. The 
dt m 

direction of L precesses like a tilted ‘top’ around direction of B with a frequency 

qB 
ω = g (2.80) 

2M 

For an electron (g = 2) this is equal to the cyclotron frequency. For protons g = 2 × 2.79 
[Written like this because spin is 1 ]. For neutrons g = 2 × (−1.93).

2 
Precession frequency is thus 

ωelectron 
f = = (28GHz) × (B/Tesla) (2.81) 

2π 
ωproton 

= (43MHz) × (B/Tesla) (2.82) 
2π 

This is the (classical) basis of Nuclear Magnetic Resonance but of course that really needs 
QM. 
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