
Lecture 7 

Applications of Magnetostatics 

Today’s topics 

1. Inductance

2. Magnetic materials 

3. Boundary conditions 

4. Shielding

Inductance

1. Recall how to calculate capacitance from electrostatics 

2
2 01                (more fundamental)

2 2
ECV d

CV Q

=

=

r

2. The definitions are the same if the plates are located in a vacuum region 

3. For two parallel plates 0 /C A= d

4. As a simple magnetostatic analog let’s calculate the inductance of a finite 

diameter wire carrying a current I  surrounded by a perfectly conducting shell 

carrying a return current .I

5. First we calculate the magnetic field inside and outside the wire.
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6. Inside the wire  while outside the wire .0× =B J

e

0× =B
7. By symmetry we see that the non-trivial field components are  and B=B

z zJ=J e .

8. If the current in the wire is uniform then 2/zJ I a=
9. Apply Ampere’s law in the wire 

( ) 0

0 0
2 2

1

2 2

z
d rB J
r dr

I r c I rB
a r a

=

= + =

10. Outside the wire 

( )1 0d rB
r dr

cB
r

=

=

11. Match across r a := 00        / 2
a

B c= = I

12. Therefore

0

2
IB
r

=

13. Below is a plot of B  due to the wire 

14. Now let’s calculate the field due to the return current 

0

Inside the shell:       0    / 0

Outside the shell:     0    / /2

B c r

B c r I

× = = =

× = = =

B

B r
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15. The total field is found by superposition and is shown below. 

Calculating the inductance 

1. In general there is both internal and external inductance. 

2. This makes it a little more complicated than calculating capacitance between 

thin conducting plates. 

3. Here is a simple widely used definition of external inductance 

    external fluxe
e eL

I
= =

4. Evaluate the external flux 

0 0

0
ln

2 2

L b b

e
a a

IL dr IL bdS dz B dr
r a

= = = =B n

5. The inductance is thus given by 

0 ln
2

e L bL
I a

= =

6. We get the same result from the more basic definition 

2
2

0

1
2 2

BLI d= r
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7. The details are as follows 

( )
22 22
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L bL
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= =

=

r L

Equivalence of the two definitions 

1. The equivalence is shown as follows 
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= +

= =

r A r

A A A A r

A A r A B n

A B l l A B l l

B l A l B l A l
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2. The last term is further simplified by noting that 

e d d= = × =B S A S A ld
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3. Therefore,

21 1           
2 2e e eL I I L I= = e

4. Both definitions are equivalent for vacuum fields (i.e. when )0× × =A

Internal inductance 

1. For the internal inductance  we always must use the general definition iL

22 2
2 0 0

20
0 0

0

1 2
2 2 2 2 1

8

a

i

i

B L I rL I d rdr
a

LL

= = =

=

r
6
I L

2. What does the definition  give? i iL I=

0 0
20

0

2 4

4

a

i

i

IL r ILB drdz dr
a

LL

= = =

=

3. This is an incorrect answer. 

4. For distributed currents we must use the general energy definition to calculate 

inductance.
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Magnetic materials 

1. Recall that in electrostatics an applied electric field induced a small electric 

dipole whose electric field direction was opposite to the applied field. 

2. There is a magnetic analog when a material is placed in a DC magnetic field. 

3. What happens when such atoms are placed in an applied magnetic field ?  A 

torque develops that tends to flip the electron current so that the current flows in 

a plane perpendicular to .

aB

aB

4. The flips to a new position where the torque is zero. 

5. The direction of the flipping is such as to enhance the field (paramagnetic). 

6. As in electrostatics we can introduce the property of permeability.  This is 

analogous to polarizability which allowed us to introduce a relative dielectric 

constant.
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7. The comparisons are as follows:

0 0
0 0

0

Electrostatics                           Magnetostatics

ind p ind m

free ind
free ind

ind
ind

= = +

= + × = +

=

E E B B
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( ) ( )
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0
0
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ind ind
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× =

= × =

+ = × =
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B J
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E B
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0

free

r

J

8. Note that for typical materials E  is reduced by the dielectric effect while B  is 

increased by the paramagnetic effect. 

Boundary conditions

1. Let’s determine the boundary conditions across the interface between a magnetic 

material and a vacuum region. 

2. There are two conditions in analogy with electrostatics.  The first is given by 

Electrostatics     0   0    0

Magnetostatics   0    0    0

d

dS

× = = × =

= = =

E E l n E

B B n n B

3. The second condition, assuming no surface charge or surface current is given by 

Electrostatics        0    0

Magnetostatics      0    / 0

dS

d

= = =

× = = × =

D D n n E

H J H l n B
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Statics in a resistive medium 

1. Consider a piece of metal with finite thickness. 

2. It has a resistivity  because of the friction felt by electrons as they try to flow 

through the fixed lattice of ions. 

3. Therefore a piece of metal carrying a current density J  generates a resistive 

electric field given by the familiar ohm’s law .=E J

4. Static problems of this type are solved in the following order 

5. First, in a static problem  so that as before .  When no free 

charges flow in the conductor  satisfies  

0× =E =E

2 0=

6. We solve this equation first.   

7. Assuming that  is known we next turn to Ampere’s law.  For a magnetostatic 

problem we can again write  with .  The vector potential 

then satisfies 

= ×B A 0=A

2 0=A

8. Since we know  we can now solve for A

DC Shielding 

1. We next examine the important practical question of DC shielding.   

2. The goals are to see whether (1) dielectrics can shield electric fields and (2) 

magnetic materials can shield magnetic fields. 
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3. Start with the dielectric problem as illustrated below. 

4. With no dielectric the interior electric field is obviously .0 yE=E e

5. With a shell of dielectric we have to solve the Laplace’s equation in three regions 

and match across the interfaces. 

6. In each region  and .=E 2 0=
7. The solutions are given by 

1 1

1 1
0 0

0 02 2

3
2

3 3
2 22 2

I.       sin sin

sin cos

II.      sin

sin cos

III.

r

r

c cE y E r
r r
c c

E E
r r
cc r
r

c cc c
r r

= + = +

= + +

= +

= + +

=

E e

E e

4

4 4

sin

         sin cosr

c r

c c= +E e e

e

e

b

8. The goal is to calculate  and see how it compares in magnitude to the 

applied field .
4 insidec E=

0E

9. The matching conditions across r  yield two relations =

1 3
0 22 2

1 3
0 22 2

0       

0r r r

c cE E c
b b
c cE E c
b b

= =

= + = +
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10. There are two similar conditions across r a=

3
4 2 2

3
4 2 2

0       

0r r r

cE c c
a
cE c c
a

= =

= = +

11. These are 4 equations with four unknowns.  We can easily solve them and 

evaluate .4c

( ) ( ) ( )2 2
0

4
1 1 /

inside r

r r

E
E a b

=
+ 2

12. In the limit of a large dielectric constant  we have 1r

( )2 2
0

4 1
1 /

inside

r

E
E a b

=

13. The conclusion is that a material with a high dielectric constant does a good job 

shielding DC electric fields. 

Magnetic shielding 

1. We can now ask a similar question with respect to magnetostatics.  Does a highly 

permeable material shield out magnetic fields? 

2. The calculation is very similar to the electrostatic case.  Consider the problem 

illustrated below. 
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3. Clearly with no permeable material the field on the inside is just .0B

4. When a permeable material is present we again have to solve a three region 

problem.  The solutions in each region satisfy ( )zA= ×B e  with .2 0A =
5. The solutions are given by 

1 1

1 1
0 0

0 02 2

3
2

3 3
2 22 2

I.       cos cos

sin cos

II.      cos

sin cos

III.

r

r

c cA B x B r
r r
c c

B B
r r
cA c r
r

c cc c
r r

A

= + = +

= + +

= +

= + +

=

B e

B e

4

4 4

cos

         sin cosr

c r

c c= +B e e

e

e

6. We again have matching conditions across the two interfaces. 

1 3
0 22 2

1 3
0 22 2

3
4 2 2

3
4 2 2

0       

1/ 0   

0       

1/         

r b

b
r

r a

a
r

c cB B c
b b
c cB B c
b b
cB c c
a
cB c c
a

= + = +

= =

= = +

=

7. Solve for  to find the interior field. 4c

( ) ( ) ( ) ( )2 2 2 2 2
0

4 4 1
1 /1 1 /

inside r

rr r

B
B aa b

=
+ b

8. A material with a high permeability ( )1r  does a good job shielding out DC 

magnetic fields. 

9. What happens if I try to shield electric or magnetic fields with a conductor which 

has ?1r r= =
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Conducting materials 

1. To learn a little about conductors consider the single turn solenoidal magnetic 

illustrated below. 

2. Our goal is to calculate the electric field, magnetic field, and current density.  We 

start with the electric field in the magnet which by symmetry is in the 

direction.

3. The electric field equation reduces to 

110        0        drE cE
r dr r

× = = =E

4. The constant  is found by noting that around the circumference of the coil 1c

2

1
0

                
2 2
V VV E rdr c E

r
= = =

5. The current density in the magnet is then given by 

2
E VJ

r
= =

6. The magnetic field in the magnet satisfies Ampere’s law 

0
0 2

zdB VJ
dr r
= =

7. The solution is  

0
2ln

2z
VB r= + c
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8. The integration constant  is found by noting that in a long solenoid the field is 

zero outside the coil.  Therefore, 
2c

0 ln
2z
V rB

b
=

9. The magnetic field in the coil is uniform.  Its value is given by 

0( ) ln
2z inside
V aB r

b
=

10. The fields are sketched below.
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