
Lecture 6 

Basics of Magnetostatics 

Today’s topics 

1. New topic – magnetostatics 

2. Present a parallel development as we did for electrostatics 

3. Derive basic relations from a fundamental force law 

4. Derive the analogs of E  and 

5. Derive the analog of Gauss’ theorem 

6. Derive the integral formulation of magnetostatics 

7. Derive the differential form of magnetostatics 

8. A few simple problems 

General comments 

1. What is magnetostatics?  The study of DC magnetic fields that arise from the 

motion of charged particles. 

2. Since charged particles are present, does this mean we also must have an electric 

field?  No!!  Electrons can flow through ions in such a way that current flows but 

there is still no net charge, and hence no electric field. This is the situation in 

magnetostatics 

3. Magnetostatics is more complicated than electrostatics. 

4. Single magnetic charges do not exist in nature.  The simplest basic element in 

magnetostatics is the magnetic dipole, which is equivalent to two, closely paired 

equal and opposite charges in electrostatics.  In magnetostatics the dipole forms 

from a small circular loop of current. 

5. Magnetic geometries are also more complicated than in electrostatics.  The vector 

nature of the magnetic field is less intuitive. 
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The basic force of magnetostatics 

1. Recall electrostatics. 
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q q= r rF
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2. In magnetostatics there is an equivalent empirical law which we take as a 

postulate
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3. The force is proportional to .21/r

4. The force is perpendicular to : . 1v 12 1 0=F v

5. The force depends on the particle velocities 1 2,v v

6. The constant of proportionality is equal to .7
0 4 10 ' /Henry s meter= ×

The magnetic field 

1. We define the magnetic field in terms of the force as follows 
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2. Let’s extend the definition to include many charges 
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3. Let’s extend the analysis to a continuum 
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4. Now, recall that 
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5. This allows us to introduce the vector potential A
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6. A  is the vector potential and the integral expression for A  is known as the Biot-

Savart law. 

7. A basic property of magnetostatics 

Electrostatics                 0

Magnetostatics              0

= × =

= × =

E E

B A B

A new relation – conservation of charge 

1. A basic physical property is that charge is conserved.  It cannot be created or 

destroyed.

2. This implies a relation between  and J .

3. Let’s derive this relation for a simple 1-D case 
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4. Statement of charge conservation 

Rate of increase of charge = flow in of charge  flow out of charge

               (1)                 =         (2)                      (3)

5. The separate terms are as follows 
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6. Recall that .  The conservation law becomes  = current density=v J
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8. In 3-D 
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9. Note, in electrostatics conservation of charge implies .  This is a 

trivial result since we are looking at static situations with no time variation 

/ t = 0

10. However, in magnetostatics conservation of charge implies that 0=J .  The 

current is divergence free for static problems. 

11. This implies something about  as follows A
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The analog of Poisson’s equation 

1. In electrostatics we have  

2
0/

=

=

E

2. In magnetostatics 
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3. This is the equivalent to Poisson’s equation. 

4. Also, we find that 
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5. This is Ampere’s law for magnetostatics. 

6. We can now easily obtain the integral formulation of magnetostatics.  First 

equation. 
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7. Second equation. 
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Summary and comparison 
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Example 1 

1. Find the magnetic field in a long solenoid. 

2. By symmetry there is only a z  component of field: z zB=B e

3. With no sources at infinity  must vanish outside the coil: .zB 0   for  zB r= > a

4. By symmetry ( ) ( ), ,z zB r z B r=
5. Inside the solenoid 

0

0 0zB J
r

× =

= =

B J

6. The solution is 

0 .zB B cons= = t

7. Express  in terms the current flowing in the wire I  by using Amperes law. 0B
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8. Therefore, inside a long solenoid the field is uniform with a value 

0
0

NIB
L

=

Example 2 

1. Find the field inside a torus. 

2. By symmetry we see that / 0=

3. The only non-zero field component is .B=B e

4. As in the straight solenoid  outside the torus. 0B =

5. Inside the torus we have 
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6. The solution is 
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7. Express K  in terms of the coil current by using the integral form of Ampere’s 

law 
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8. This gives 
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Example 3 

1. Find the field due to the current flowing in a loop of wire 

2. This problem is more complicated than you would think.  Proceed as follows. 

3. Since there are no conductors and the current is localized it makes sense to start 

with the Biot-Savart law 
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4. Note that the current density is given by
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5. One tricky problem is that .  As we integrate around the loop the 

direction of  is constantly changing while at the fixed observation point 

does not change. 

e e
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6. This difficulty is avoided by expressing the unit vectors in rectangular 

coordinates which always stay fixed.  Thus, 
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7. The Biot-Savart law becomes 
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8. We see that 
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9. The next step is to combine these terms to evaluate 

at the observation point. 
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10. To evaluate this integral note that 
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11. We can now carry out the integration over .,R Z
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12. This integral can be evaluated in terms of the complete elliptic integrals 

( ) ( ),K k E k .  This does not provide too much insight. 

13. A more useful approach is to evaluate the integrals far from the loop of wire. 

14. As shown below we let  and assume r a .sin cosR r Z r= =
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15. In this limit 
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16. The vector potential becomes 
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17. Comparison with electrostatics: 
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18. A circular loop of wire produces a magnetic dipole field 
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