
Lecture 5 

Solving Problems using Green’s Theorem 

 

Today’s topics 

 

1. Show how Green’s theorem can be used to solve general electrostatic problems 

2. Dielectrics 

 

A well known application of Green’s theorem 

 

1. Last time we derived Green’s theorem. 

2. We also derived the free space Green’s function in a sphere and cylinder. 

3. These functions were then used to derive the integral form of electrostatics from 

which the potential is derived by an integral involving the charge density. 

4. This was reassuring but we already knew these results from prior work. 

5. Today we focus on the more interesting and general problem of solving multi-

dimensional electrostatic problems in complex geometries, including the presence 

of conductors (and dielectrics) 

6. Let’s set up a typical problem.  We want to solve 
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7. Although we could solve this problem numerically it becomes inconvenient and 

computationally time consuming to do so for a large variety of boundary 

conditions .  Often this is what we need to do. Sφ
8. It is time consuming because each new boundary condition requires a whole new 

numerical calculation. 

9. Green’s theorem helps if we now change the boundary condition on G  from the 

free space condition at infinity to a different one specified on . S
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10. Green’s theorem for an arbitrary interior point becomes 
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11. For any  we need to evaluate a volume integral and a surface integral to 

determine , a simple numerical task. 
Sφ

φ
12. If we want to redo the problem for a different  we only need to re-evaluate the 

lower dimensional surface integral. 
Sφ

13. This seems too good to be true!  What is the catch? 

14. In general it is of comparable difficulty to determine the Green’s function 

satisfying ( ) 0G S =  as it is to solve the original problem.  This is a major 

stumbling block. 

 

A less well known but more important application 

 

1. We show below how to use Green’s theorem to solve the general problem without 

having to deal with the complicated problem of determining G  such that 

( ) 0G S = . 

2. Let’s return to the original problem . 2
0/φ ρ∇ = − ε

3. For generality assume that either ( )Sφ ′  or ( )/S nφ ′∂ ∂ ′

r

 is specified. 

4. The first step is to convert from Poisson’s equation to Laplace’s equation.  We 

define  where ( ) ( ) ( )p hφ φ φ= +r r
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5. For simplicity call .  The homogeneous solution satisfies ( ) ( )hφ ψ=r r

 

 ( ) ( ) ( ) ( ) ( ) ( )2 0        or    p
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6. Green’s theorem becomes 
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7. Now, choose the observation point to lie on the surface so that .  Then 1/ 2α =
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8. Choose the Green’s function to correspond to the free space Green’s function.  

This is easy to do.  We already know this function.  No complicated boundary 

conditions on G  are required. 

9. Since we know G  it is an easy task to calculate . /G n′∂ ∂

10. If we know ( )/Sψ ′∂ n ′∂  then Green’s theorem yields an integral equation for 

( )Sψ ′ . 

11. Similarly if we know ( )Sψ ′  we have an integral equation for ( )/S nψ ′ ′∂ ∂ . 

12. This is the desired formulation.  If we assume that we can solve the integral 

equation then we will know both ( )Sψ ′  and ( )/Sψ ′∂ n ′∂ .  Thus  and hence φ  

can be easily found by using Green’s theorem for an internal point and simply 

evaluating known integrals. 

ψ

13. The next step is to show how to solve the integral equation, guaranteeing that we 

will always be able to avoid the problem of choosing improper expansion 

functions as was the case using separation of variables. 
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Solving the integral equation 

 

1. The integral equation is a linear equation.  Therefore, expansion techniques are a 

good approach.  

2. Note that in a 3-D problem we need to solve the integral equation on a closed 2-

D surface bounding the volume of interest.  For a 2-D problem we need to solve 

the integral equation on a closed 1-D curve bounding the surface of interest. 

3. Here is the absolutely critical point!!!  On a closed surface or curve the solutions 

must be periodic.  Therefore, we are guaranteed that a Fourier series must exist 

that can represent any arbitrary boundary data. 

4. For example for a 2-D problem where l  is the arc length along the boundary, the 

potential ( )lψ ψ=  can always be written as 

 

  ( ) im
ml e θψ ψ

∞

−∞
= ∑

 

5. The existence of the Fourier series guarantees that the problem of improper 

expansion functions is eliminated. 

6. Furthermore, one does not have to use the angle  as the independent variable.  

We could choose any other angle  that might be more convenient (i.e. 

could put more resolution in certain sections along the curve) 

θ

( )v v θ=

 

Details of the procedure 

 

1. There are a fair number of details to obtain the solution to the integral equation.  

We demonstrate the steps for a general 2-D problem using an elliptical surface as 

a special example. 

2. Assume the boundary curve is parameterized in terms of an arbitrary angle-like 

variable v  (i.e. ) as follows 0 v π≤ ≤ 2
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3. To use Green’s theorem note that .  Since the  factor 

cancels everywhere, we hereafter suppress it for convenience. 
zdS dl dz L dl′ ′ ′= = ′

v

zL

4. The following geometric relation for vector arc length is needed for the solution 

(where over dot denotes ) /d dv
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5. From this we find that  
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6. Similarly 
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7. From this we can evaluate the Green’s function 
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8. We also need the normal derivative of the Green’s function. 
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7. Observe that G  has a logarithmic singularity when v .  However, this is an 

integrable singularity 

v′ →

 

  ln ln  finitex dx x x x= − =∫

 

8. Because of this one might think that  would be singular as /G n′∂ ∂ 1/ ′−r r  

when v .  It is actually finite.  Using L’Hospital’s rule twice we find that for 

the case of the ellipse 

v′ →
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9. In fact it can be shown that in general  is finite on any surface as /G n′∂ ∂
0′− →r r . 
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10. Let’s return now to the integral equation of interest which can be written as 
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11. We shall solve this equation by Fourier analysis leading to a relation between 

 and  ( )vψ ( )/v nψ∂ ∂

12. The expansion is as follows 
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13. The goal now is to find a relation between the  and .  One quantity is given 

by the boundary condition.  The other is obtained by solving the integral 

equation. 

ma mb

14. Let us assume that  is specified on the surface.  This means that we 

know the  coefficients. 

( )S vψ ψ=

ma
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15. Now Fourier analyze the Green’s function and its normal derivative on the 

boundary curve 
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16. The matrix elements  are known quantities that can be evaluated 

numerically in a straightforward manner. 

,mm mmA B′ ′
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17. These expansions are substituted into Green’s theorem 
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18. Carry out Fourier analysis by multiplying by  
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19. The various terms are evaluated as follows 
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20. Combine terms 
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n
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21. In compact form this can be written as  

 

 1
2
⎛ ⎞⎟⎜ − ⋅ = ⋅⎟⎜ ⎟⎝ ⎠I A a B b  

 

22. Consequently, if  is specified, then the Fourier coefficients for the normal 

derivative are given by 

( )vψ

 

 1 1
2
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b B I A a  

 8



 

23. Conversely, if the normal derivative  is given then the Fourier 

coefficients of the potential are given by 

( )/vψ∂ n∂
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2
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a I A B b  

 

24. Once both  and  are known, then  can be found at any interior point by 

evaluating the now known Green’s function integrals. 

a b ( )ψ r

 

 ( )

S

G G d
n n

ψψ ψ
′
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25. This complicated procedure has been used extensively used in the NSE fusion 

program.   

26. One problem involved an accurate determination of the magnetic field in the 

presence of large amounts of iron in the PHENIX detector on the RHIC facility 

at Brookhaven National Laboratory. 

27. Another application involves determining the best set of coil currents in the 

Alcator C-Mod poloidal field system to achieve a given desired plasma shape. 

 

 

 

 

Dielectrics 

 

1. A new topic now – dielectrics 

2. What is a dielectric? 

3. A dielectric is an insulating material – one with no free charges and no 

conduction electrons (as in a metal) 

4. Dielectrics consist of neutral atoms which become polarized when placed in an 

electric field. 

5. We shall see that the direction of polarization is such as to cancel part of the 

applied field. 
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6. A simple physical picture is shown below 

 
7. In a real material not every atom stays polarized.  Other forces, such as thermal 

forces, are also present which tend to randomize the polarization.  Thus the 

amount of polarization depends upon the detailed atomic structure of the 

material under consideration. 

8. Let’s see if we can create a model to determine the induced electric field in a 

simple atom.  Keep in mind that this is a qualitative, not quantitative model. 

9. In the diagram below assume the nucleus of the atom is infinitely massive 

(compared to the electron).  An electron cloud encircles the nucleus with a radius 

 determined by quantum mechanics. 0r

 
10. An electric field is applied causing a slight shift  in the location of the 

electron cloud.  There is now more cloud below the nucleus than above it.  This 

generates a net Coulomb force on the cloud.  

0d r

11. Note that direction of the electric field induced by this charge separation is 

opposite to that of the applied field. 

12. We can approximate the relationship between d  and E  by a simple force 

balance as follows. 

13. Assume the sphere of electron charge has a uniform charge density  and a 

thickness . 
0ρ

0r rΔ

14. The net upward force on the cloud  is found by integrating 

Coulomb’s force law over the volume of the cloud 

cosz zF F θ= ⋅ =F e
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15. This integral can easily be evaluated in the limits  and .  We 

obtain (with q e ) 
0d r 0r rΔ

= −
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6

q d rqE d E
r e

πε
πε

⎛ ⎞⎟⎜= − → = ⎟⎜ ⎟⎟⎜⎝ ⎠
 

 

 

16. Here we have balanced the shift in the orbit d  caused by the electric field E  

(equal to the applied field plus the induced field due to all other atoms) against 

the attractive Coulomb force. 

17. Next, note that in a dielectric the negative charge due to a downward shift of one 

electron is balanced by a deficit of negative charge from the atom located one 

layer lower.  There is only a net effect at the surfaces of the dielectric where no 

further compensating charges are available.   

 
18. As shown, this produces a surface charge whose value is estimated by assuming 

that on average the number density of atoms in the material is n  particles per 

cubic meter.   

19. Each electron carries a charge equal to q .  The total number of unbalanced 

electrons is related to the average shift d  due to the polarization.  Thus 

.  The total charge in the unbalanced layer is qnV  which is 

equivalent to a surface charge density  

e

σ = =

= −

nV nAd=

2 /qnV A qnd

20. Clearly there is also a net deficit of electrons on the upper edge of dielectric 

producing a surface charge . 1 2σ σ= −

21. The net macroscopic effect of the polarization is to induce a macroscopic 

opposing electric field within the dielectric which is calculated as the field 

between two equal and opposite surface charges. 
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22. We now introduce the concept of the “relative dielectric constant” as follows.  

Write down the 1-D form of Poisson’s equation. 

 

 0

0 0

indfreeE
z

ρρε
ε ε

∂ = +
∂

 

 

23. Here,  represents the induced surface charge due to the polarization while indρ

freeρ  represents any other free charge that may be present in the material (e.g. 

such as due to a beam of charged particles propagating through the material) 

24. If we integrate Poisson’s equation across the dielectric we obtain 

 

 0 0free indE dzε ρ ε= + E∫  

 

25. This can be rewritten as  
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p f
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26. We can now define the relative dielectric constant as  and Poisson’s 

equation becomes 

1rε = + pχ

 

 ( )ε ρ∇ ⋅ =E  

 

27. For a simple dielectric we show that after all this work we simply replace  with 

. 
0ε

0 rε ε ε=
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Boundary conditions for a dielectric 

 

 

1. It is customary in E&M theory to introduce the displacement vector  so 

that Poisson’s equation becomes 

ε=D E

 

  
ρ

ε

∇ ⋅ =

=

D

D E
 

2. The boundary conditions across a dielectric-vacuum interface are conveniently 

expressed in terms of  and D .  They are found as follows. E

3. Consider the area integral shown below and use the fact that in electrostatics 

.  Stoke’s vector theorem then implies that 0∇× =E
 

 0        0d d∇× ⋅ = ⋅ = → × =∫ ∫E S E l n E  

 
 

4. Next, we integrate Poisson’s equation over the volume shown below, assuming 

that no infinitesimally thin free surface charges exist. 

 

  0        0d dS′∇ ⋅ = ⋅ = → ⋅ =∫ ∫D r D n n D

 
5. Across a dielectric-vacuum interface the tangential electric field and normal 

displacement vector are continuous. 
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The dielectric filled capacitor 

 

1. As a simple application of dielectrics consider the dielectric filled capacitor as 

shown below.  The goal is to calculate the capacitance of the system and the 

voltage profile. 

2. In particular, the electric field in each region is a constant and we want 

determine their values from which the other information can then be easily 

obtained. 

 

 
 

 

 

 

3. The solution is obtained as follows.  First use the voltage relation 

 

  ( )1 2
0

       2       
b

V Edz V E a E c c b= − → = − + = −∫ a

 

4. Second, from symmetry we see that the condition 0× =n E  across the interface 

is automatically satisfied. 

5. Third, across the interface the condition on the displacement vector reduces to 

 

  1 2         rE Eε⋅ → =n D
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6. We can solve these two simultaneous equations for  and  1E 2E
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7. The capacitance can easily be calculated from the energy definition 
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8. We see that 
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9. The voltage drop across each region can now be easily calculated. 

 

 
1 1

2 2

2
1 /

2
1 /

r

r

r

VV E a
c a

V cV E c
c a a

ε
ε

ε

= − =
+

= − =
+

 

 

10. Lastly, consider the interesting limit of a strongly diamagnetic material 

 1     rε
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11. Then 
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1
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12. Note that most of the voltage drop occurs across the vacuum.  It had better be a 

good vacuum to avoid breakdown. 
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