
Lecture 4 

Conformal Mapping and Green’s Theorem 

 

Today’s topics 

 

1. Solving electrostatic problems – continued 

2. Why separation of variables doesn’t always work 

3. Conformal mapping 

4. Green’s theorem 

 

The failure of separation of variables 

 

1. Let’s try to solve the following problem by separation of variables 

 

 ( ) ( )2
2 10     0     1S Sφ φ φ∇ = = =  

 

 
2. Use separation of variables in cylindrical coordinates 
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3. We assume that  
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4. To satisfy the boundary condition on  we require .  Therefore 

 and φ  reduces to  
2S ( )1, 0φ θ =

na = − nb

osn

 

  ( ) ( )
0

, cn n
nr b r rφ θ θ

∞
−= −∑

 

5. To satisfy the boundary condition on  we require 1S ( )[ ]1 , 1rφ θ θ =  

6. We need to calculate ( )1r θ .  This is done by noting that the equation describing 

 is given by 1S ( )2 2 2x yδ− + = a

2a

 

7. Transform to cylindrical coordinates:  cos    sinx r y rθ θ= =

8. The equation for the surface  becomes . 1r r= 2 2
1 12 cosr rδ θ δ− + =

9. Solve for  1r

 

 ( ) ( )1/22 2 2
1 cos sinr aθ δ θ δ θ= + −  

 

10. Return to the boundary condition.  We determine the coefficients  by Fourier 

analysis. Multiply 
nb

( )[ ]1 , 1rφ θ θ =  by ( )1/2 cosm dπ θ θ∫ .  The boundary 

condition becomes 
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11. The right hand side is easily evaluated 

 

  mRHS δ=
 

12. The left hand side becomes 
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14. We simply have to invert the matrix M  to find the coefficients .  This is in 

general a very simple numerical procedure.   

b

15. One might therefore think that separation of variables should work in a wide 

variety of cases, the only added difficulty being the need to numerically invert a 

matrix.  Not a very big deal. 

16. This is an incorrect conclusion.  What happens if you try this procedure?  For 

small values of δ  the procedure works well and a correct set of  are calculated. b

17. However, above a certain critical value of δ  your PC will tell you that the 

inverse matrix does not exist.  You cannot determine the values of .  No 

amount of fancy numerical tricks will help.  The inverse truly does not exist. 

b

18. What has gone wrong?  We have tried to write the solution using the wrong class 

of expansion functions.  Even though the expansion functions satisfy  

their radius of convergence does not include the entire domain of interest. 

2 0φ∇ =

19. Below is a simple intuitive example that shows the problem.  For the problem 

under consideration assume a large value of δ  so that  does not enclose the 

origin. 
1S

 
20. To satisfy the boundary condition on  we require both the  and  

solutions.  However, the  solutions diverge at the origin which is contained in 

the region where we need a solution. 

2S
nr nr−

nr−

21. Although the potential at  is finite and smooth we are attempting to 

describe this behavior by summing over an infinite set of divergent functions.  

This will not work and is the source of the problem. 

0r =

 3

13. The problem is thus reduced to a simple linear algebra problem for the 

coefficients  nb



22. OK – can we find a better set of expansion functions?  In general the answer is 

NO!!!  Only for special simple geometries with a high degree of symmetry do 

expansion techniques based on separation of variables work. 

23. What do we do?  An elegant procedure that works in certain cases makes use of 

conformal mapping techniques.  A very general procedure makes use of Green’s 

theorem.  The key point of the Green’s function procedure is that the method 

guarantees the existence of “good” surface expansion functions, thus always 

leading to the desired solution. 

 

Conformal mapping 

 

1. The conformal mapping procedure can be used to convert a complicated 

geometry into a much simpler geometry. 

2. The mapping function is defined as  where w u  and z x  

are complex variables. 

( )w f z= iv= + iy= +

3. The procedure works extremely well in 2-D geometries.  The reason, as shown 

shortly, is that the 2-D Laplace’s equation  transforms in the new 

coordinates to .   

0xx yyφ φ+ =

0uu vvφ φ+ =

4. In the new coordinates φ  also satisfies Laplace’s equation.  The beauty is that in 

the coordinate system the geometry is much simpler and it is thus much easier to 

find a solution. 

5. What are the main limitations on the conformal mapping technique? 

6. First, it only works well in a 2-D geometry.  Furthermore the geometry must be 

such that Laplace’s equation can be written as  (or the equivalent 

 cylindrical system ).   

0xx yyφ φ+ =

,r θ 2/ /rr r r rθθφ φ φ+ + = 0

0

7. It does not, for instance, work for the 2-D  system where Laplace’s equation 

has the form .  This equation cannot be transformed into the 

form  and the procedure is not very useful. 

,r z

/rr r zzrφ φ φ+ + =

0xx yyφ φ+ =

8. The second problem is that even if the geometry of interest satisfies  

we must still find the mapping function.  For certain relatively simple cases the 

mapping function can be found analytically. 

0xx yyφ φ+ =

9. In more complicated cases the mapping function can be determined numerically.  

In fact there are standard numerical packages which carry out this task.   
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10. Consequently finding the mapping function can be slightly inconvenient but is 

possible in a wide variety of cases as long as Laplace’s equation in the relevant 

geometry can be written as . 0xx yyφ φ+ =

 

Review of complex variables 

 

1. The key point that we need to prove is that the Laplacian in  coordinates 

transforms into the Laplacian in  coordinates for a conformal transformation. 

,x y

,u v

2. To do this we need the Cauchy-Riemann equations which are obtained as follows. 

3. Consider the conformal mapping  where w u  and . ( )w f z= iv= + z x iy= +
4. The derivation is as follow 

 
( )w u iv f z

u v df z dfi
x x dz x d
u v df zi i
y y dz y

= + =

∂ ∂ ∂+ = =
∂ ∂ ∂
∂ ∂ ∂+ = =
∂ ∂ ∂

z
df
dz

 

 

5. Now equate the real and imaginary parts of the two expressions for  

yielding the Cauchy-Riemann equations 

/df dz

 
u v
x y
u v
y x

∂ ∂=
∂ ∂
∂ ∂=−
∂ ∂

 

 

6. Straightforward differentiation of these relations shows that both u  and  satisfy 

Laplace’s equation. 

v

 

 
2 2 2 2

2 2 2 2 0u u v v
x y x y

∂ ∂ ∂ ∂+ = + =
∂ ∂ ∂ ∂

 

 

7. The next step is to transform Laplace’s equation in  coordinates into  

coordinates.   

,x y ,u v
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8. For a general transformation (not necessarily a conformal transformation) it 

follows that if ( ),u u x y=  and , application of the chain rule for 

derivatives leads to 

( ,v v x y= )

xx

y

v

v

 

  
2 2

2 2

2

2
xx uu x uv x x vv x u xx v

yy uu y uv y y vv y u yy v y

u u v v u

u u v v u

φ φ φ φ φ φ

φ φ φ φ φ φ

= + + + +

= + + + +

 

9. We now add the equations together, assume the transformation corresponds to a 

conformal mapping, and make use of the Cauchy-Riemann equations.  We find 

 

( )
2

2
2 2 2

xx yy uu vv

x x x

df
dz

df u iv u v
dz

φ φ φ φ+ = +

= + = + x

 

 

10. Therefore if φ  satisfies Laplace’s equation in  coordinates it also does so in 

 coordinates. 

,x y

,u v

 

 
2 2

2 2 0
u v
φ φ∂ ∂+ =

∂ ∂
 

 

11. This is the beauty of the conformal mapping. 

 

The mapping function 

 

1. Consider next the shifted circle problem previously discussed.   

2. What we want to find is a mapping function that has two properties: (1) it maps 

the outer unit circle in the  plane into the unit circle in the  plane, and 

(2) it maps the inner shifted circle in the  plane into a centered circle in the 

 plane. 

,x y ,u v

,x y

,u v
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3. If we can find such a mapping then our task will be to solve Laplace’s equation in 

a coordinate system where the boundaries are two concentric circles, usually a 

very simple task. 

4. The correct mapping function is given by 

 

 
1
zw

z
α
α

−=
−

 

 

 where α  is a free parameter to be determined. 

5. Let’s first check the mapping of the unit circle.  In the  plane the unit circle 

is given by  which is equivalent to .  In the  plane 

we let  which is equivalent to . 

,x y

cos , sinx yθ= = θ

χ

iz e θ= ,u v

cos , sinu R v Rχ= = eiw R χ=

 
6. We need to verify that the mapping leads to , a unit circle in the  

plane.  Straightforward substitution shows that 

1R = ,u v

 

 cos sinRe
1 cos sin

i i
i

χ θ α α
α α α α

− +=
− −

 

 

7. Multiply each side of the equation by its complex conjugate. 

 

 
2

2
2

1 2 cos 1
1 2 cos

R α θ α
α θ α

− += =
− +

 

 

8. The unit circle maps into the unit circle for any value of . α

9. Consider now the inner shifted circle .  This maps into cos , sinx a y aδ θ′= + = θ′

 

 7



 

( ) ( )
( ) ( )
( )
( )

22
2

22 2

22

22 2

2 cos
1 2 1 cos

1 cos
1 1 cos

a aR
a a

a A
a C

δ α δ α θ
α αδ α αδ

δ α θ
α αδ θ

′+ − + −=
′+ − − −

⎡ ⎤′+ − +⎢ ⎥= ⎢ ⎥′+ − +

θ

⎣ ⎦

 

 

 where 

 

 

( )
( )
( )
( )

22

22 2

2

2 1
1

aA
a
aC
a

δ α
δ α

α αδ
α αδ

−=
+ −

−=
+ −

 

 

10. In order for the surface to be a concentric circle in the  plane we require that 

the mapping lead to   There cannot be any θ  dependence in .  

To satisfy this constraint we must choose α  such that A .  Then the  

dependence will cancel out. 

,u v

0 .R R const= = ′ R

C= θ′

 
11. After a slightly tedious calculation we obtain a quadratic equation for α .   

 

 
2 2

2 1 1 0aδα α
δ

⎛ ⎞+ − ⎟⎜− + =⎟⎜ ⎟⎟⎜⎝ ⎠
 

 

12. The root that corresponds to  is given by 0 1R <

 

 
1/222 2 2 21 1 1 4

2
a aδ δα

δ δ

⎧ ⎫⎪ ⎪⎡ ⎤⎛ ⎞⎪ ⎪+ − + −⎪ ⎪⎟⎢ ⎥⎜= − −⎟⎨ ⎬⎜ ⎟⎢ ⎥⎟⎜⎪ ⎪⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭
 

 

13. Also, keep in mind that for topologically consistent solutions to exist  must 

lie in the ranges 0 1 and . 

, aδ

δ< < 0 1a δ< < −
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14. For a given  we have now determined  and the mapping is completely 

defined. 

, aδ α

 

The solution 

 

1. The solution to the problem in the  plane is easily found.  We let 

.  Laplace’s equation and the boundary conditions 

become 

,u v

cos , sinu R v Rχ= = χ

 

( ) ( )
2

02 2

1 1 0     1 0     1R R
R R R R

φ φ φ φ
χ

⎛ ⎞∂ ∂ ∂⎟⎜ + = =⎟⎜ ⎟⎜⎝ ⎠∂ ∂ ∂
=  

  

2. Because of the  symmetry in the boundary conditions it follows that the 

solution is of the form 

χ

( ) ( ),R Rφ χ φ= . 

3. The solution is given by 

 

 ( )
0

ln
ln
RR
R

φ =  

4. We can transform back into the  plane by noting that ,x y

 

 

( )

( )

( )
( )

22
2

2 2 2

2 2
2

20 2 2

1

1

x yR
x y

aR
a

α
α α
δ α

αδ α

− +=
− +
− +=
− +

 

 

5. To visualize the potential surfaces note that a  surface corresponds to 

an  surface.  The relation giving  can be easily inverted 

yielding 

.constφ =
.R const= ( ,R R x y= )

 

 
( ) ( )( )

( )

2 2 42
2

22 2 2 2

1 11
1

1 1

R RR
x y

R R

αα
α α

⎡ ⎤ − −−⎢ ⎥− + = −⎢ ⎥− −⎢ ⎥⎣ ⎦

2

 

 

6. The potential surfaces in the  plane are a sequence of shifted circles ,x y

7. This completes the solution. 
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Green’s theorem 

 

1. What is the purpose of Green’s theorem? 

2. In an infinite space problem Green’s theorem converts a PDE ( )2
0/φ ρ ε∇ =−  

into a simple integral evaluation.  This is good but we already know how to do 

this. 

3. For boundary value problems Green’s theorem converts a PDE ( )2
0/φ ρ ε∇ =−  

into a simple integral evaluation.  This is good but in general it is difficult to find 

the Green’s function with finite boundaries. 

4. However, if one knows the Green’s function for a fixed set of boundaries, it is 

easy to calculate the solution for a wide range of boundary conditions. 

5. For boundary value problems Green’s theorem using the simple free space 

Green’s function converts the PDE ( )2
0/φ ρ ε∇ =−  into an integral equation.  

This is good because we know the Green’s function, but unpleasant because we 

have to solve an integral equation. 

6. For simple geometries the integral equation is easy to solve.  This is good. 

7. In general geometries, solving the integral equation is often the best approach.  

This may be hard to believe but it is true. 

 

Derivation of Green’s theorem 

 

1. Consider two functions φ  and G . 

2. Note the following identity 

 

 
( ) 2 2

2 2

G G G G G G

G G

φ φ φ φ φ

φ φ

∇ ⋅ ∇ − ∇ = ∇ +∇ ⋅∇ − ∇ −∇ ⋅∇

= ∇ − ∇

φ

S ′

 

 

3. Now integrate over a closed volume using the divergence theorem (We could 

easily include multiple boundaries but restrict the analysis to one boundary for 

simplicity) 

 

 
V S

d d′ ′ ′ ′∇ ⋅ = ⋅∫ ∫A r n A  
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4. Apply this to our identity 

 

 ( ) ( )2 2

V S

G G d G G dSφ φ φ φ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′∇ − ∇ = ⋅∇ − ⋅∇∫ ∫r n n  

 

5. Now assume that G  is the Green’s function satisfying 

 

 ( ) ( ) ( ) ( )2G x x y yδ δ δ δ′ ′ ′ ′∇ = − = − − −r r z z

ε

 

 

6. For the moment let’s not worry about the boundary conditions on G .  Also note 

that r  is the observation point and  is the integration point. ′r
7. Note that the delta function is defined such that 

 

  ( )
 1         For an interior point

 0         For an exterior point

1/2        For a surface point

dδ

⎧⎪⎪⎪⎪⎪′ ′− = ⎨⎪⎪⎪⎪⎪⎩

∫ r r r

 

8. Now assume that φ  satisfies Poisson’s equation:  2
0/φ ρ∇ =−

9. Evaluate the terms in Greens theorem 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2

2

0

  1      Interior point

       0      Exterior point     

1/2     Surface point

1

V V

V V

S

G d d

G d G d

GG G dS S G
n n

φ φ δ αφ

α

φ ρ
ε

φφ φ φ

′ ′ ′ ′ ′ ′ ′∇ − = − =

⎧⎪⎪⎪⎪⎪= ⎨⎪⎪⎪⎪⎪⎩

′ ′ ′ ′ ′ ′ ′− ∇ =− −

⎡ ∂ ∂′ ′ ′ ′ ′ ′ ′ ′⋅∇ − ⋅∇ = −⎢ ′ ′∂ ∂⎣

∫ ∫

∫ ∫

∫

r r r r r r r r r

r r r r r r r r

n n     
S

dS
n

⎤ ∂′ ′ ′⋅∇ ≡⎥ ′⎢ ⎥ ∂⎦∫ n

 

 

10. Combine terms 

 

 ( ) ( ) ( ) ( )
0

1

V S

GG d S G
n n

φαφ ρ φ
ε

dS
⎡ ⎤∂ ∂′ ′ ′ ′=− − + − ′⎢ ⎥′ ′⎢ ⎥∂ ∂⎣ ⎦∫ ∫r r r r r  

 

11. This is Green’s theorem.  Admittedly it doesn’t look very helpful in its present 

form. 

12.  To show how it can be helpful let’s calculate the infinite space Green’s function 

for a sphere and a cylinder. 

 

Free space spherical Green’s function 

 

1. G  satisfies: ( ) ( ) ( ) ( )2G x x y yδ δ δ δ′ ′ ′ ′∇ = − = − − −r r z z  

2. Try a solution of the form  where ( )G G u= ( ) ( ) ( )2 22u x x y y z z ′′ ′ ′= − + − + −  

3.  A short calculation shows that G  satisfies 

 

 ( )2
2

1 Gu u
u u u

δ⎛ ⎞∂ ∂ ⎟⎜ =⎟⎜ ⎟⎜⎝ ⎠∂ ∂
 

 

4.  The solution for G  for  is given by 0u ≠
 

 ( ) ( )1 1
2    for 0c cG u c G

u u
= + = ∞ =  

 

 12



5. The value of  is found by integrating around a small sphere located at .  

The terms are 
1c 0u =

 

 
( )

2 2
1sin 4

1

GGd GdS u d d c
u

u d

θ θ φ π

δ

∂∇ = ⋅∇ = =−
∂

=

∫ ∫ ∫
∫

r n

r
 

 

6. Therefore  and 1 1/ 4c π= −

 

 ( ) 1 1
4

G
π

′ − =−
′−

r r
r r

 

 

7. This is the spherical Green’s function. 

 

Free space cylindrical Green’s function 

 

1. The cylindrical Green’s function is found in a similar way 

2.  satisfies G ( ) (
2 2

2 2

G G x x y y
x y

δ δ∂ ∂ ′ ′+ = − −
∂ ∂

)  

3. Let  where ( )G G u= ( ) ( )2 22u x x y y′ ′= − + −  

4.  satisfies G ( )
1 Gu u
u u u

δ⎛ ⎞∂ ∂ ⎟⎜ =⎟⎜ ⎟⎜⎝ ⎠∂ ∂
 

5. The solution is ( ) ( )1 2 1ln ln      for 1 0G u c u c c u G= + = =  

6. Find  by integrating over a small circle located at .  The separate terms 

are 
1c 0u =

 

 
( ) ( ) ( )

2
12 z

z

GGd GdS u d dz L c
u

u d x x y y dx dy dz L

θ π

δ δ δ

∂′ ′ ′ ′ ′ ′ ′ ′∇ = ⋅∇ = =
′∂

′ ′ ′ ′ ′ ′ ′= − − =

∫ ∫ ∫
∫ ∫

r n

r
 

 

7. Therefore  and the Green’s function is given by 1 1/ 2c π=

 

 ( ) (2 21 1ln ln
2 4

G u x x y
π π

)y⎡ ⎤′ ′= = − + −⎢ ⎥⎣ ⎦  
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Using Green’s theorem for infinite space problems (i.e. no conductors) 

 

1. Consider a 3-D domain where the volume extends to infinity.  This is the case of 

the spherical Green’s function. 

2. Recall that for localized charges (i.e. no sources at ) both φ  and G  vanish at 

infinity. 

∞

3. Consequently both terms in the surface integral vanish 

 

 ( ) 0     as 
S

GS G dS r
n n

φφ⎡ ⎤∂ ∂′ ′− = → ∞⎢ ⎥′ ′⎢ ⎥∂ ∂⎣ ⎦∫  

 

4. For any point within the domain we must take  and Green’s theorem 

reduces to 

1α =

 

 ( )
( )

0

1
4

V

d
ρ

φ
πε

′
′=

′−∫
r

r r
r r

 

 

5. This is correct but we already knew the result from previous lectures. 

6. A similar result follows from the cylinder 

 

 ( ) ( )
0

1 ln
2

V

dSφ ρ
πε

′ ′= −∫r r r ′r

′

 

 

7. Here  are two dimensional functions.  

The total line charge density λ  is given by 

, ,x y x yx y x y dS dx dy′ ′ ′ ′ ′= + = + =r e e r e e

( ) /dS Coul mλ ρ ′ ′= ∫ r .  

8. So far we have done a lot of work verifying what we already know.  In the next 

lecture we will learn how to use Green’s theorem to solve far more difficult 

problems. 
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