Homework Assignment #3

22.105

Electromagnetic Interactions

Fall 2005

Distributed: Thursday, October 5, 2005

Due: Tuesday, October 17, 2005

Problem 1

A circular loop of wire has a major radius R_0 , a minor radius a, and carries a current I.

a. Prove that in the limit $a \ll R_0$ the vector potential at an arbitrary observation point R, ϕ, Z is given by

$$\mathbf{A} = \mathbf{e}_{\phi} \frac{\mu_{0} I}{\pi} \left(\frac{R_{0}}{R} \right)^{1/2} \frac{1}{k} \left[\left(1 - \frac{k^{2}}{2} \right) K(k) - E(k) \right]$$

$$k^{2} = \frac{4R_{0}R}{\left(R_{0} + R \right)^{2} + Z^{2}}$$

- b. Calculate B_Z at the center of the loop R = 0, Z = 0.
- c. Calculate the inductance of the loop assuming $a \ll R_0$. Note, even though a is small you cannot set it equal to zero.

Problem 2

A hollow metallic cylinder of radius R_0 and finite length L carries a current density

$$\mathbf{J} = (I/L)\delta(R - R_0)\mathbf{e}_{\phi} \qquad -L/2 \le Z \le L/2$$

Calculate the longitudinal magnetic field $B_z(0,Z)$ along the axis.