Homework Assignment \#3

22.105

Electromagnetic Interactions
Fall 2005

Distributed: Thursday, October 5, 2005

Due: Tuesday, October 17, 2005

Problem 1

A circular loop of wire has a major radius R_{0}, a minor radius a, and carries a current I.
a. Prove that in the limit $a \ll R_{0}$ the vector potential at an arbitrary observation point R, ϕ, Z is given by

$$
\begin{aligned}
& \mathbf{A}=\mathbf{e}_{\phi} \frac{\mu_{0} I}{\pi}\left(\frac{R_{0}}{R}\right)^{1 / 2} \frac{1}{k}\left[\left(1-\frac{k^{2}}{2}\right) K(k)-E(k)\right] \\
& k^{2}=\frac{4 R_{0} R}{\left(R_{0}+R\right)^{2}+Z^{2}}
\end{aligned}
$$

b. Calculate B_{z} at the center of the loop $R=0, Z=0$.
c. Calculate the inductance of the loop assuming $a \ll R_{0}$. Note, even though a is small you cannot set it equal to zero.

Problem 2

A hollow metallic cylinder of radius R_{0} and finite length L carries a current density

$$
\mathbf{J}=(I / L) \delta\left(R-R_{0}\right) \mathbf{e}_{\phi} \quad-L / 2 \leq Z \leq L / 2
$$

Calculate the longitudinal magnetic field $B_{z}(0, Z)$ along the axis.

