Homework Assignment \#2
 22.105 Electromagnetic Interactions

Fall 2005

Distributed: Tuesday, September 26, 2005
Due: Thursday, October 5, 2005
The purpose of this problem is to determine how the electric field behaves around a noncircular conducting electrode. The geometry is idealized to simplify the calculations but the essential physics is maintained.

Consider a thin hollow perfectly conducting grounded cylinder with an elliptical cross section. The surface of the ellipse is given by

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

with $b>a$. A line charge of magnitude λ coul $/ \mathrm{m}$ is placed on the axis $x=0, y=0$.
a. Calculate the radial electric field, E_{0}, at $x=0, y=b$ for the circular reference case $b=a$.
b. Now assume that $b \neq a$. Try to calculate $E_{r}(x=0, y=b)$ using separation of variables in cylindrical (r, θ) coordinates and find the maximum value of b / a for which the expansion converges.
c. Calculate $E_{r}(x=0, y=b)$ for arbitrary b / a using the Green's function procedure described in class. In particular evaluate and plot $E_{r}(x=0, y=b) / E_{0}$ as a function of $\varepsilon=R_{c} /(a b)^{1 / 2}$. Here, R_{c} is the radius of curvature at the tip of the cylinder and normalizing it to $(a b)^{1 / 2}$ is equivalent to considering a sequence of electrodes with fixed cross sectional area but varying elongation. Note 1: A convenient angle v with which to parameterize the surface is defined as follows, $x=a \cos v, y=b \sin v$. Note 2: There is a considerable savings in algebra and computation by immediately focusing Green's theorem on the observation point $x=0, y=b$.

