# Sustainable Energy Options for Africa

Robert Stoner Associate Director MIT Energy Initiative







Photo by NASA Visible Earth, Goddard Space, Flight Center Scientific Visualization Studio.

### Rwinkwavu, Rwanda





### **Unique Africa**



By 2030 roughly 1.3 billion people will remain un-electrified. With Africa's un-electrified projected to grow to 700 million, gains made in other regions will be largely negated.



Image by MIT OpenCourseWare. Adapted from Dalberg Associates, IEA data.

# Four "Typical" Countries

|                                  | South   |         |         |        |
|----------------------------------|---------|---------|---------|--------|
|                                  | Africa  | Egypt   | Nigeria | Kenya  |
| Population (million)             | 49.1    | 80.5    | 152     | 40     |
| Pop. Growth Rate (%)             | -0.05%  | 2.00%   | 2.00%   | 2.60%  |
| Urban Pop. (%)                   | 61%     | 43%     | 48%     | 22%    |
| Urban Pop. Growth Rate           | 1.40%   | 1.80%   | 3.80%   | 4.00%  |
| GDP (Exchange Rate \$Billion)    | \$287.2 | \$188.0 | \$173.0 | \$32.7 |
| GDP per capita (\$)              | \$5,849 | \$2,335 | \$1,138 | \$818  |
| Electricity per capita (kWh)     | 4,894   | 1,471   | 126.38  | 122    |
|                                  |         |         |         |        |
| Urban Growth per year (millions) | 0.42    | 0.62    | 2.8     | 0.35   |
| Rural Growth per year (millions) | -0.44   | 0.99    | 0.27    | 0.69   |
| % Change to Urban Annually       | 1.76%   | -0.45%  | 1.65%   | -0.84% |
|                                  |         |         |         |        |

(Source: CIA Factbook)

The lack of rural electrification will be with us for a long time.



### Nigeria





Image by MIT OpenCourseWare. Source: IEA.

# **Energy in OPC's**

|                   | Total Population,<br>2006 (million) | Number of people<br>without electricity<br>access (million) | (%) | Number of people<br>relying on fuelwood<br>and charcoal for<br>cooking (million) | (%) |
|-------------------|-------------------------------------|-------------------------------------------------------------|-----|----------------------------------------------------------------------------------|-----|
| Angola            | 16.6                                | 14.6                                                        | 88  | 15.7                                                                             | 95  |
| Cameroon          | 18.2                                | 14.2                                                        | 78  | 14.2                                                                             | 78  |
| Chad              | 10.5                                | 10.1                                                        | 97  | 10.2                                                                             | 97  |
| Congo             | 3.7                                 | 2.9                                                         | 78  | 2.9                                                                              | 80  |
| Côte d'Ivoire     | 18.9                                | 11.6                                                        | 61  | 14.7                                                                             | 78  |
| Equatorial Guinea | 0.5                                 | 0.4                                                         | 73  | 0.3                                                                              | 59  |
| Gabon             | 1.3                                 | 0.9                                                         | 70  | 0.4                                                                              | 33  |
| Mozambique        | 21                                  | 18.6                                                        | 89  | 16.9                                                                             | 80  |
| Nigeria           | 144.7                               | 76.6                                                        | 53  | 93.8                                                                             | 65  |
| Sudan             | 37.7                                | 26.9                                                        | 71  | 735.2                                                                            | 93  |
| Total             | 273.1                               | 176.9                                                       | 65  | 204                                                                              | 75  |





# **Gas Flaring in Nigeria**



Graph from *Country Analysis Brief: Nigeria*. U.S. Energy Information Administration, July 2010.

### How much e is that?

532 bcf  $\approx$  156B kWh @50%  $\approx$  80B kWhe (Consumption  $\approx$  20B kWhe)



#### 2<sup>nd</sup> next to Russia 25% of gross production

Photo of gas flares in Nigeria removed due to copyright restrictions.

# **Gas – an option for Nigeria**

Text removed due to copyright restrictions. Please see Layne, Rachel. "GE Gas Turbines to be Added to Nigerian Omotosho Plant." Bloomberg L. P., November 22, 2010.



### **Create Options for Neighbors**

Map of Africa showing locations of existing, planned, or under construction oil and pipelines and other energy infrastructure has been removed due to copyright restrictions. Please see Fig. 15.5 in *World Energy Outlook 2008*. OECD/IEA, 2008.

**Source:** IEA World Energy Outlook 2008 Compiled from PFC Energy and Petroleum Economist.



### LPG

### **Liquified Petroleum Gas**

12% of households \$50-\$100 system cost

Competes with wood.



## **Nigerian Deforestation**

Total Energy Consumption in Nigeria, by Type (2007)



Source: International Energy Agency (IEA)

Forest cover loss >40% (since 1990).

Loss is >3.3% per year.

75% of timber is imports.



Graph from Country Analysis Brief: Nigeria. U.S. Energy Information Administration, July 2010.

# **Powering Nigeria** – a little

150M people5 people/HH50% without electricity...so we need 15M connections

#### Capital for T&D @ \$1,000/HH is \$15B

#### Capital for Generation @ 1kWh/HH/day

15M kWh/day + 5M kWh/day (losses) = 20M kWh/day Assume 4 hours per day level load...5M kW or 5 GW.

So, buy 10GW nameplate capacity @ \$1,000/kw (gas) for \$10B.

#### Total capital is \$15B+\$10B=\$25B. (equal to Federal Budget)



### **African Power Pools**



Image by MIT OpenCourseWare. Adapted from *World Energy Outlook 2008*. Source: NEPAD data.

- Economies of scale
- Greater reliability
- Larger loads
- Options for resource poor



### **The Solar Option**



Image by NASA Atmospheric Science Data Center, Surface Meteorology and Solar Energy.



Source: SWERA

### **Global Horizontal Incidence**

Please see "Africa Global Horizontal Solar Radiation - Annual." NREL, November 2005.



### **Solar Home Systems (SHS)**

Component-wise \$500-\$1000

Images removed due to copyright restrictions.

System in a Box \$200-\$1500



### **Solar Lanterns**

Image remove due to copyright restrictions. Please see "Solar Lanterns Test: Shades of Light." GTZ, May 2009.



# **Egypt and North Africa**





Photo by Liam Gumley, University of Wisconsin - CIMMS, NASA Visible Earth, Goddard Space Flight Center.

### **Direct Normal Incidence**

Please see "Africa Direct Normal Solar Radiation - Annual." NREL, November 2005.



### **Concentrated Solar**



Photo by Idrose on Flickr.

### Trough



Tower

### \$3-5/kW



Photo by afloresm on Flickr.

### Desertec



Courtesy of Dii GmbH. Used with permission.

**Vision:** Coastal CSP Plants provide electric power to Europe and North Africa + Desalination. (approx. 600kmx600km completely filled.)



(Source: David MacKay, Sustainable Energy Without the Hot Air.)

| Country      | Economic potential<br>(TWh/y) | Coastal potential<br>(TWh/y) |
|--------------|-------------------------------|------------------------------|
| Algeria      | 169000                        | 60                           |
| Libya        | 140 000                       | 500                          |
| Saudi Arabia | 125000                        | 2000                         |
| Egypt        | 74000                         | 500                          |
| Iraq         | 29 000                        | 60                           |
| Morocco      | 20 000                        | 300                          |
| Oman         | 19 (00()                      | 500                          |
| Syria        | 10 000                        | 0                            |
| Tunisia      | 9 200                         | 350                          |
| Jordan       | 6400                          | 0                            |
| Yemen        | 5100                          | 390                          |
| Israel       | 3 100                         | 1                            |
| UAE          | 2000                          | 540                          |
| Kuwait       | 1 500                         | 130                          |
| Spain        | 1 300                         | 70                           |
| Qatar        | 800                           | 320                          |
| Portugal     | 140                           | 7                            |
| Turkey       | 130                           | 12                           |
| Total        | 620 000<br>(70 000 GW)        | 6 000<br>(650 GW)            |

\*World Energy Consumption 132,000 TWh/yr



### Desertec

#### e.g. Tunisia:

GDP Impact @ \$0.05/kWh \$17.5B/year in sales to europe.

(BUT Levelized Cost = \$0.20/kWh !!)

Whatever...what does it cost?

To generate 350,000 GWh/yr Required CSP Capacity 100GW

Cost of 100GW CSP @ \$5,000/kW \$500B

### The Hydro Option





Image by MIT OpenCourseWare. Source: IEA.

### Deforestation

Please see maps in Fig. 1 and Site 9: Eldama Ravine Constituency, Koibatak District in Akotsi, Erick F. N., Michael Gachanja, and Jacob K. Ndirangu. "Changes in Forest Cover in Kenya's Five 'Water Towers,' 2003-2005." DRSRS/KFWG, November 2006.























## **The Geothermal Option**

### **Rift Valley** Potential 4-8GW

Africa Rift Valley Geothermal Development Facility (ARGeo) -\$18M

Kenya, Ethiopia, Djibouti, Eritrea, Uganda, Tanzania

### **Olkaria Complex (I-IV)**

175MWe installed (200MW nationally)
800MWe potential (2-4GW nationally)
Objective is 1200MW by 2015
280MW in Olkaria I and IV just started (2013)
\$1.314B (i.e., \$4,700/kW) all in.



Photo of the geothermal power plant at Olkaria removed due to copyright restrictions. Image by NASA/JPL/NIMA.



### Nuclear Kenya

Photo of a nuclear power plant near the ocean has been removed due to copyright restrictions.



### African Power Pools - Again



Image by MIT OpenCourseWare. Adapted from *World Energy Outlook 2008*. Source: NEPAD data.



### **South Africa**





Image by Jacques Descloitres, MODIS Land Group, NASA Visible Earth, Goddard Space Flight Center.

### **Post Apartheid Electrification**

Photo of South Africa showing power lines overhead in filthy urban area has been removed due to copyright restrictions.



### **South African Innovations**

Innovations:

- Elimination of 3-phase standard approach.
- Adoption of SWER and other cost reduction strategies.
- Readiboards.
- Prepaid meters.
- Blanket electrification.
- Revised standards for small consumers enabled use of cheaper cabling.



### 85% and Counting

Map removed due to copyright restrictions. Please see Fig. 2 in "Community Electricity in Rural South Africa: Renewable Mini-Grid Assessment." ScottishPower/G7, 2004.



### **Electrification Impact**

B. Bekker et al. / Energy Policy 36 (2008) 3115-3127



Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Adoption for cooking significantly lags lighting displacing paraffin and wood.



### **Coal Dependence**



Image by MIT OpenCourseWare. Source: IEA.



### Medupi – Clean Coal!



Photography by Anthony Allen, www.aerialphoto.co.za. Used with permission.

### \$4.5B 880 ha 6x800MW

April 2010.



### **South Africa's REFIT**

| Parameter                                                        | Units        | Wind      | Small Hydro | Landfill Gas<br>Methane | Concentrated<br>Solar Plant (CSP),<br>Parabolic Trough with<br>Storage (6 hrs per day) |
|------------------------------------------------------------------|--------------|-----------|-------------|-------------------------|----------------------------------------------------------------------------------------|
| Capital cost: engineering<br>procurement & construction<br>(EPC) | \$/kW        | 2000      | 2600        | 2400                    | 4700                                                                                   |
| Land cost                                                        |              | 5%        | 2%          | 2%                      | 2%                                                                                     |
| Allowance for funds under construction (AFUC)                    |              | 4.4%      | 10.6%       | 4.4%                    | 4.4%                                                                                   |
| Tx/Dx integration cost                                           |              | 3%        | 3%          | 3%                      | 3%                                                                                     |
| Storage (CSP)                                                    |              | -         | -           | -                       | 8%                                                                                     |
| Total investment cost                                            | \$/kW        | 2255      | 3020        | 2631                    | 5545                                                                                   |
| Fixed O&M                                                        | 2009\$/kW/Yr | 24        | 39          | 116                     | 66                                                                                     |
| Variable O&M                                                     | 2009\$/kWh   | 0         | 0           | 0                       | 0                                                                                      |
| Economic life                                                    | Years        | 20        | 20          | 20                      | 20                                                                                     |
| WACC                                                             |              | 12%       | 12%         | 12%                     | 12%                                                                                    |
| Plant lead time                                                  | Years        | 2         | 3           | 2                       | 2                                                                                      |
| Fuel type                                                        |              | Renewable | Renewable   | Renewable               | Renewable                                                                              |
| Fuel cost                                                        | \$/10^6BTU   | 0         | -           | 1.5                     | 0                                                                                      |
| Fuel cost                                                        | \$/kWh       | -         | 0.00106     | -                       |                                                                                        |
| Heat rate                                                        | BTU/kWh      | -         | -           | 13500                   | -                                                                                      |
| Assumed load factor                                              |              | 27%       | 50%         | 80%                     | 40%                                                                                    |
| Levelised cost of electricity production                         | \$/kWh       | 0.1247    | 0.0940      | 0.0896                  | 0.2092                                                                                 |
| Exchange rate R/\$                                               | ZAR/\$       | 10        | 10          | 10                      | 10                                                                                     |
| Levelised cost of electricity production                         | R/kWh        | 1.247     | 0.940       | 0.896                   | 2.092                                                                                  |



Image by MIT OpenCourseWare. Adapted from National Energy Regulator of South Africa. Table shows the Renewable Energy Feed-in Tariff (REFIT) schedule.

## **Upington Solar Park**

Please see "Africa Direct Normal Solar Radiation - Annual." NREL, November 2005.





- Africa is a big place the options are as varied as the terrain.
- Energy and the sustainability of the population are inseparable.
- The industrialization track (mainly urban), and quality of life track (mainly rural) must both be pursued.
- Technical innovation will be crucial to meet scale and cost requirements of the market.



MIT OpenCourseWare http://ocw.mit.edu

#### 22.081J / 2.650J / 10.291J / 1.818J / 2.65J / 10.391J / 11.371J / 22.811J / ESD.166J Introduction to Sustainable Energy Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.