

1.818J/2.65J/3.564J/10.391J/11.371J/22.811J/ESD166J SUSTAINABLE ENERGY

Prof. Michael W. Golay Nuclear Engineering Dept.

HYDROPOWER

HYDRO POWER – A CASE STUDY

- Some facts and figures
- Large-scale versus small scale
- High head versus low-head
- Energy conversion technology
- Environmental and social impacts
- Economic issues

FOUR TYPES OF HYDROPOWER SYSTEMS

- 1. Impoundment Involving Dams: e.g., Hoover Dam, Grand Coulee
- 2. Diversion or Run-of-River Systems: e.g., Niagara Falls
- 3. Pumped Storage
 - Two way flow
 - Pumped up to a storage reservoir and returned to lower elevation for power generation
- 4. Tidal: e.g., la Rance

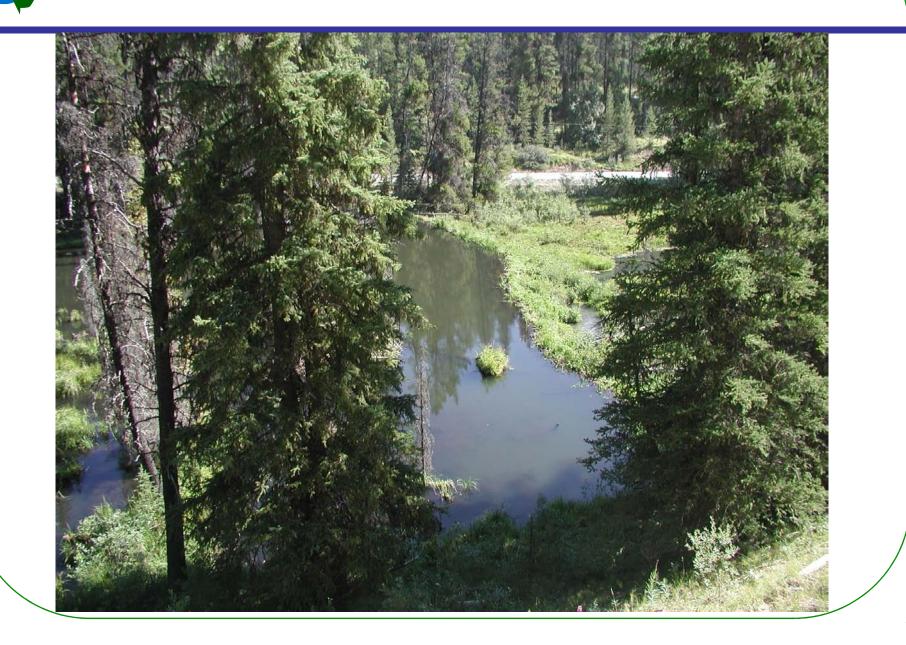



Photo by Peter Stevens on Flickr.

HYDRO-QUÉBEC PRODUCTION

- 97% renewable energy
- 57 hydroelectric generating stations (35,647 MW)
- 26 reservoirs (capacity of 175 TWh / year)
- 1 nuclear power plant
- Annual investment: \$2 billion

CANIAPISCAU RESERVOIR

Aerial photo of Caniapiscau Reservoir removed due to copyright restrictions.

Caniapiscau Reservoir is a man-made lake, created as part of the La Grande Complex (James Bay) Hydro-electric Project.

http://www.ilec.or.jp/database/nam/nam-35.html

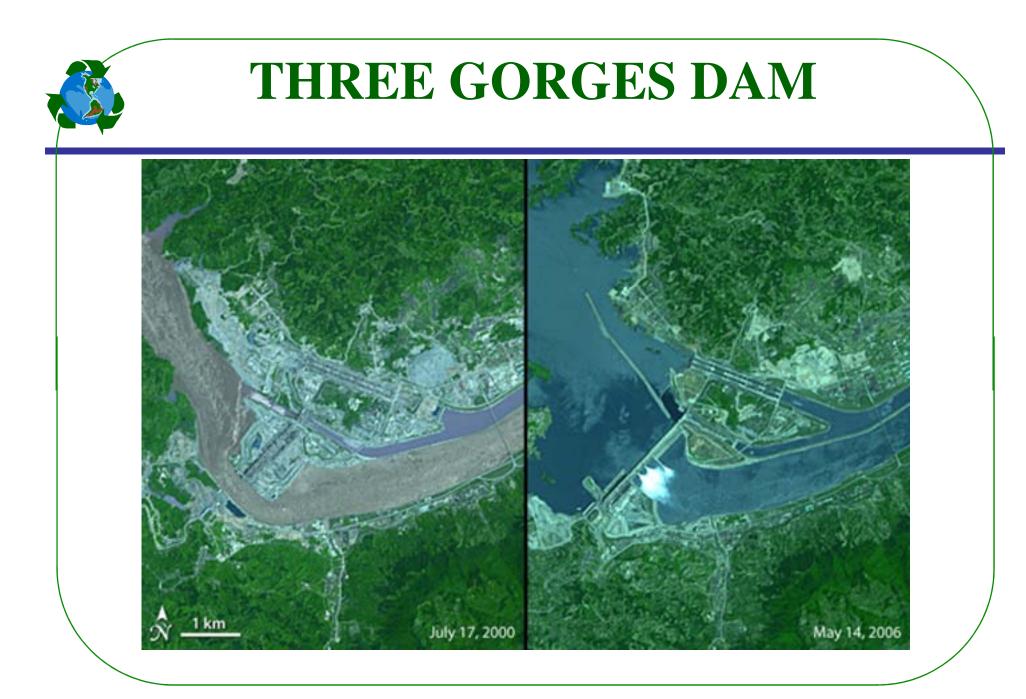
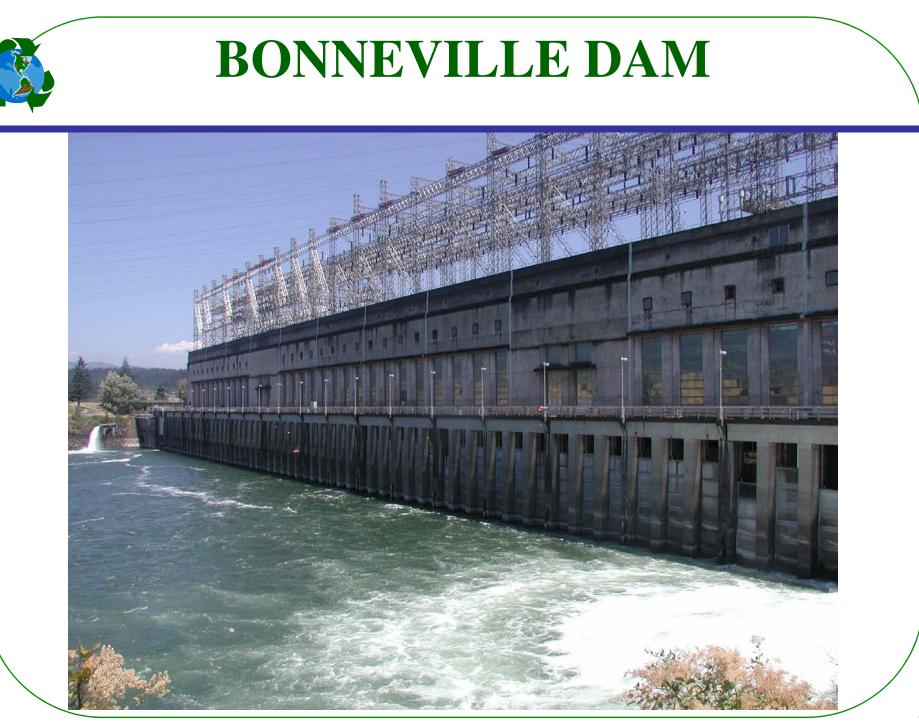
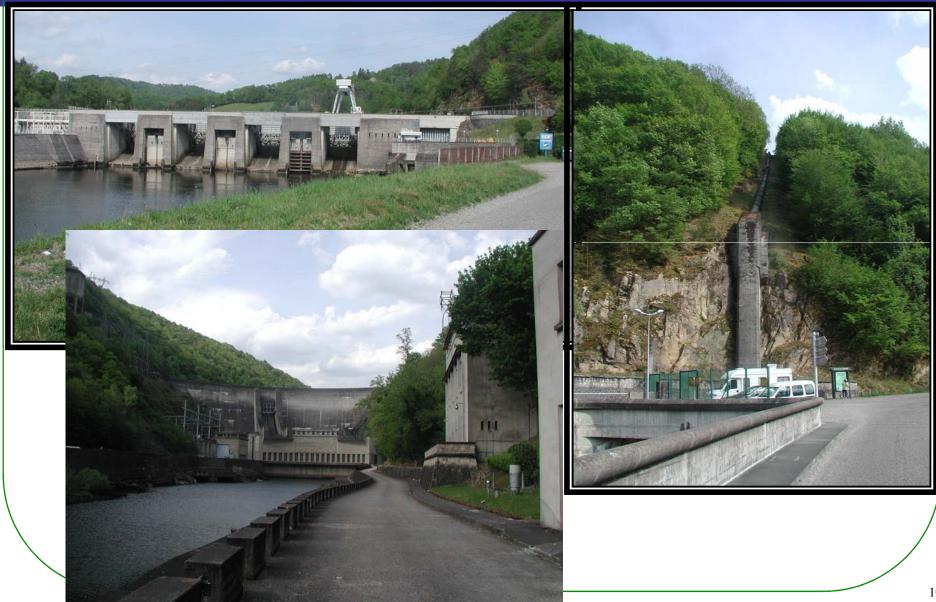




Image by Jesse Allen, Earth Observatory, using ASTER data made available by NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team. Via NASA Visible Earth, Goddard Space Flight Center.

DORDOGNE DAM

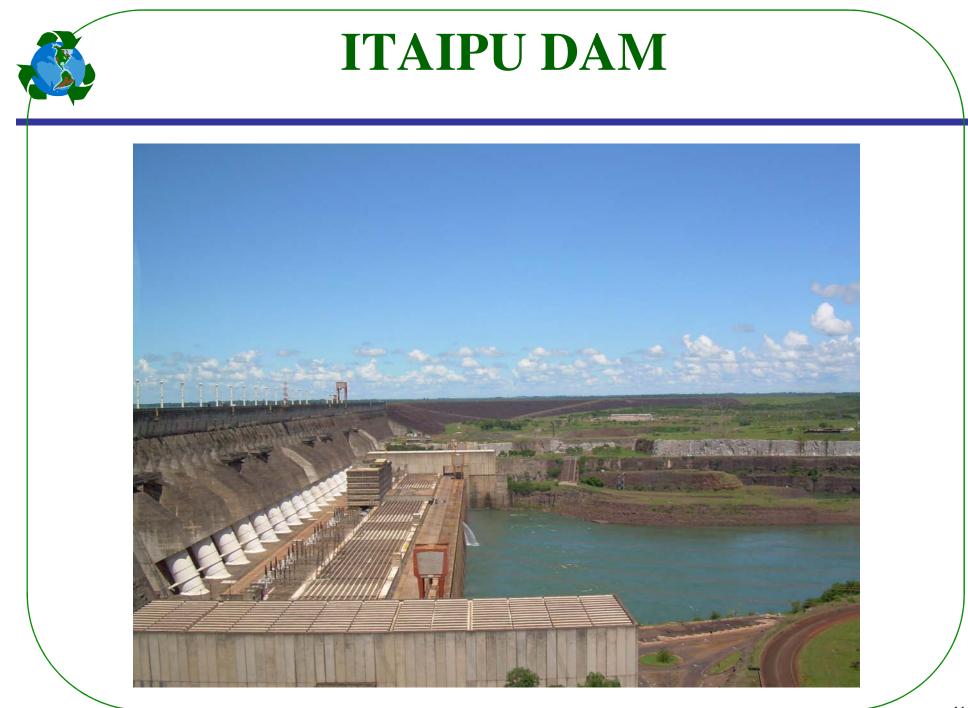
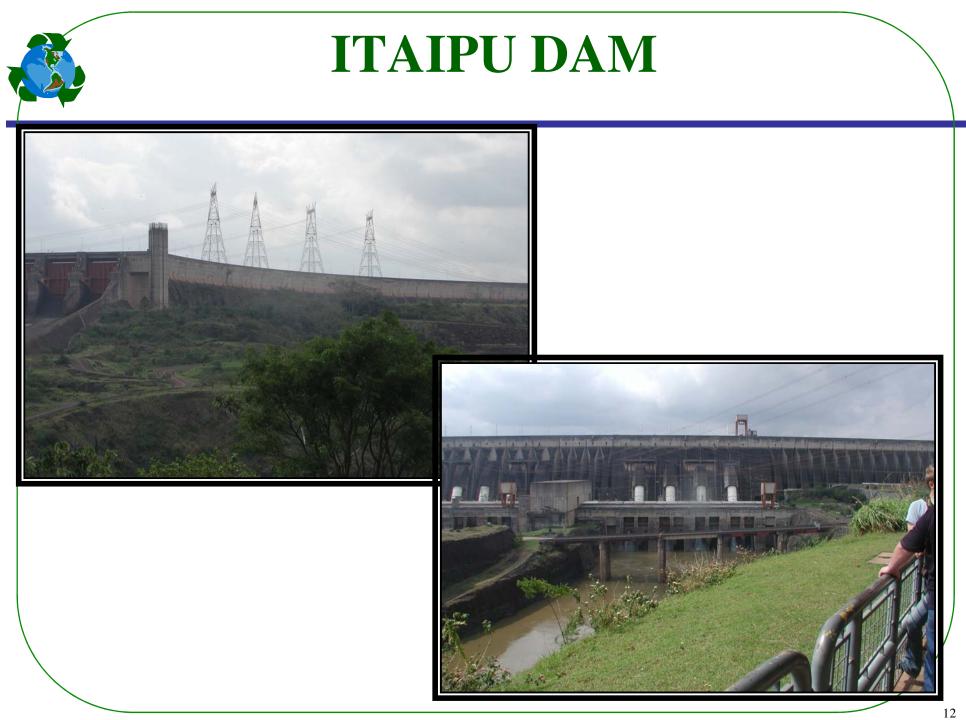
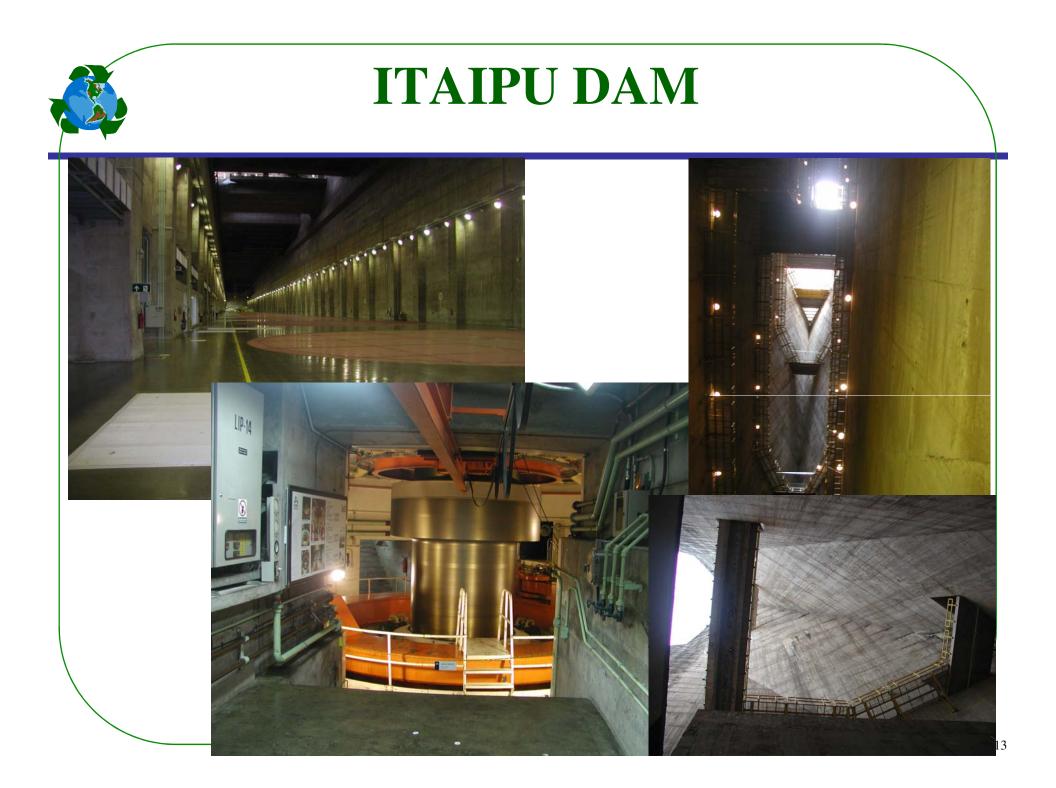
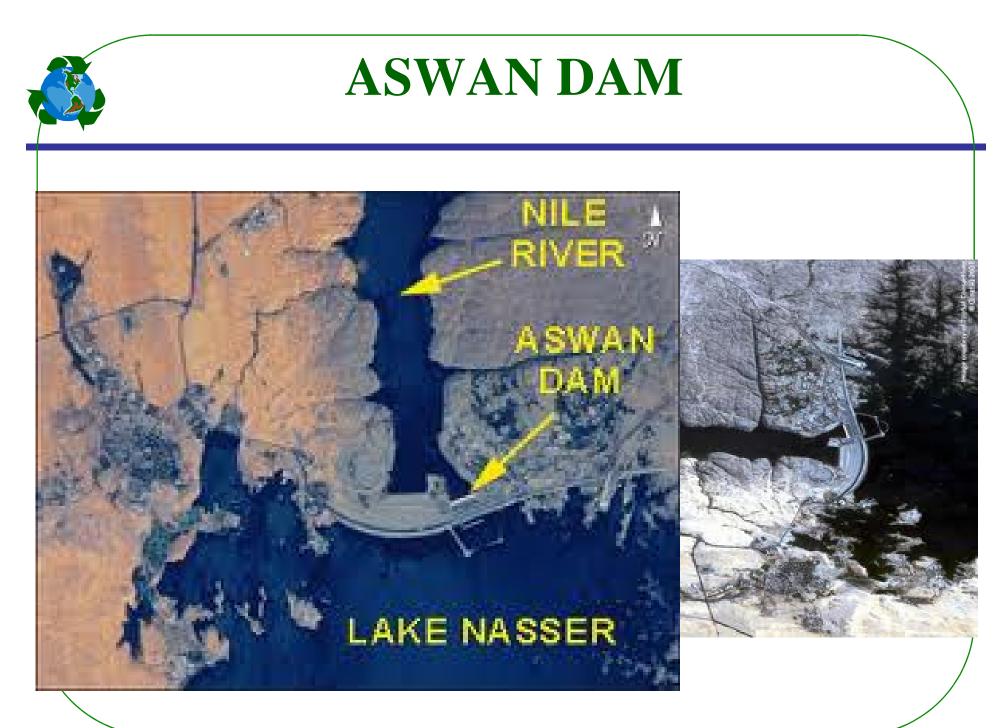





Photo by Herr stahlhoefer on Wikimedia Commons.

Photos by Image Science & Analysis Laboratory, NASA Johnson Space Center and NASA Visible Earth, Goddard Space Flight Center.

COMMON FEATURES OF CONVENTIONAL HYDROPOWER INSTALLATIONS

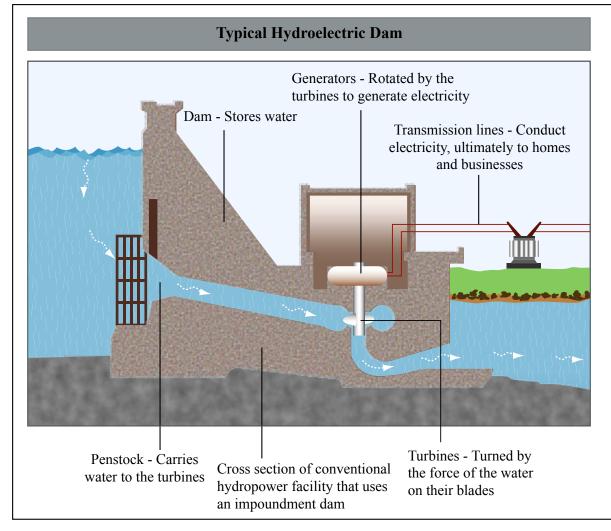


Image by MIT OpenCourseWare. Adapted from Tennessee Valley Authority.

CONVENTIONAL HIGH HEAD RUN-OF-RIVER HYDROPOWER, e.g., NIAGARA FALLS

HYDRO POWER – SOME FACTS AND FIGURES

- Current World Hydropower Production (2006)
 - ~ 3000 TWh -- about 20% of the world's electricity and about 88% of electricity from renewable sources
 - ~ 777 GWe of capacity in 150 countries
- US capacity 100,451 MWe (2009)
 - 78,951 MWe conventional hydro
 - 21,500 MWe pumped storage
 - About 8% of US electricity equivalent to 2.9 quads
 - Approximately 70% of US renewable energy
- Average Capacity/Availability Factor 42% (~6% of total capacity)

COMPARISON OF ELECTRIC GENERATION CAPACITY IN NORTH AMERICA (2006)

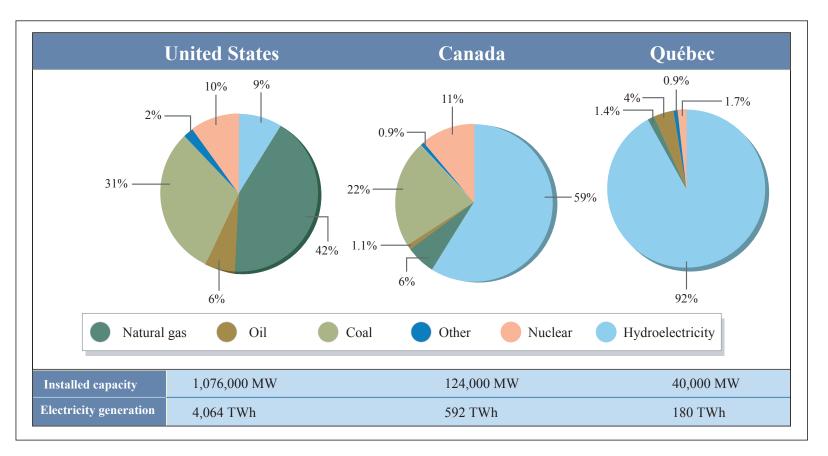


Image by MIT OpenCourseWare. Source: Statistics Canada.


ELECTRICITY SUPPLY OPTIONS IN QUÉBEC AND THE REST OF NORTH AMERICA

Courtesy of Hydro-Québec. Used with permission.

TRANSMISSION SYSTEM

	Neighboring system	Import mode (MW)	Export mode (MW)
	New York	1,100	2,000
on.	Ontario	1,945	2,705
	New England	2,070	2,275
	New-Brunswick	785	1,080
	Newfoundland and Labrador	5,150	0

Courtesy of Hydro-Québec. Used with permission.

HYDROELECTRIC PROJECTS -2005-2020

Map of projected Hydro-Quebec hydroelectric construction removed due to copyright restrictions. Please see this map of current Hydro-Quebec construction instead.

HYDRO POWER – SOME FACTS AND FIGURES, continued

- Big Range in Capacity and Size
 - Power capacity 1 kWe to 14500 MWe
 - Hydraulic head < 1 m to 1500 m (from low-head to high-head) (S. Fiorano, Italy)
 - Largest earth dam height 300 m (Tajikistan)
 - Largest reinforced concrete dam height– 305 m (China)
 - Reservoir volume 180 km³ (Zimbabwe)
 - Reservoir area 8,482 km² (Lake Volta, Ghana)
- Theoretical Potential, Technically Exploitable
 - 15000 TWh/yr or about 4,000,000 MWe of capacity

REPRESENTATIVE MEGA-SCALE HYDROPOWER PROJECTS

Name	Name Location		Capacity, MWe	Reservoir size
Grand Coulee	Columbia River, Lake Roosevelt, Washington	Impoundment dam, 550 ft (170m) high	6809	9.6 million acre ft. 11.9 km ³
Niagara Falls	Niagara River. New York	Diversion, run of river	2400	nil
Hoover Dam	Colorado River, Lake Mead, Nevada	Impoundment dam, 726 ft (223m) high	2080	28.5 million acre ft. 35.2 km ³
Norris Dam TVA	Clinch River, Norris Lake, Tennessee	Impoundment dam, 265 ft (81m) high	131.4	
Glen Canyon	Colorado River, Lake Powell, Arizona	Impoundment dam, 710 ft (261m) high	1296	24.3 million acre ft. 30 km ³
James Bay Project La Grande 1, 2A, 3, 4 Robert-Bourassa Laforge 1, 2 Brisay Eastmain 1, 1A	La Grande River Watershed and Laforge River, Quebcc, Canada	Impoundment and run-of- river, multiple dams	8671 +5616 +1197 + 469 + 768	>100 Quabbins!!
Itaipu	Parana River, Itaipu Lake, Paraguay/Brazil	Impoundment dam, 643 ft (196 m) high	14,000	23.5 x 10 ¹² acre ft. 29 million km ³
Three Gorges	Yangze River, Three Gorges Lake China	Impoundment dam, 607 ft (185 m) high	18,200	31.8 million acre ft. 39.3 km ³
Guri	Caroni River, Venezuela	Impoundment dam, 531 ft (162 m) high	10,235	109.4 million acre ft. 135 km ³
Krasnoyarsk	Yenisey River, Krasnoyarsk Lake, Russia	Impoundment dam, 407 ft (124 m) high	6,000	59.4 million acre ft. 73.3 km ³

Image by MIT OpenCourseWare. Adapted from Table 12.1 in Tester, Jefferson W., et al. *Sustainable Energy: Choosing Among Options*. MIT Press, 2005. ISBN: 9780262201537.

HYDROPOWER IS STRATEGICALLY IMPORTANT WORLDWIDE (2008)

- North America
 661,991 GWh/yr
- Central and South America 665,316 GWh/yr
- Africa 99,449 GWh/yr
- Asia and Oceania 878,332 GWh/yr

- Europe 547,732 GWh/yr
- Eurasia
 222,254 GWh/yr
- Middle East
 25,064 GWh/yr

1,560 North American Plants (5,000 Units) 13,000 International Plants (42,000 Units) World Total = 3,100,139 GWh/yr World Total = \$50,000,000,000/yr

TEN OF THE LARGEST HYDROELECTRIC PRODUCERS (2009)

Country	Annual hydroelectric production (TWh)	Installed capacity (GW)	Capacity factor	% of total capacity
China	585.2	196.79	0.37	22.25
Canada	369.5	88.974	0.59	61.12
Brazil	363.8	69.080	0.56	85.56
United States	250.6	79.511	0.42	5.74
Russia	167.0	45.000	0.42	17.64
Norway	140.5	27.528	0.49	98.25
India	115.6	33.600	0.43	15.80
Venezuela	86.8			67.17
Japan	69.2	27.229	0.37	7.21
Sweden	65.5	16.209	0.46	44.34

FUTURE HYDROELECTRIC PROJECTS OVER 5,000 MW

Name	Capacity (MW)	Country	Construction	Completion
Red Sea Dam	50,000	Djibouti Yemen	Proposed	
Grand Inga Dam	39,000	Congo DR	2014	2025
Three Gorges Dam	22,500	China	1994	2011
Baihetan Dam	13,050	China	2009	2015
Belo Monte Dam	11,233	Brazil	Proposed	
Wudongde Dam	7,500	China	2009	2015

Table 12.4 Potential for hydropower development in selected countriesbased on technical potential and economic potential in today's energymarkets

Country	Hydro as % of total electricity	Ratio of theoretical potential to actual	Ratio of economic potential to actual
Norway	100	5.77	1.8
Brazil	91.7	5.4	3.0
Switzerland	80	_	1.1
Canada	63	3.81	1.54
India	25	4.2	3.0
France	20	1.15	1.0
China	17	10.1	6.6
Indonesia	14	31.3	3.13
United States	10	1.82	1.3
World total	19	18.34	>2.78

Image by MIT OpenCourseWare. Adapted from Table 12.4 in Tester, Jefferson W., et al. *Sustainable Energy: Choosing Among Options*. MIT Press, 2005. ISBN: 9780262201537.

HYDROPOWER CAPACITY ESTIMATES

Continent	Canacit	ty in 2005	Maximum Theoretical Potential	Technically Possible	Economically Possible
Continent	GWe	TWh/yr	TWh/yr	TWh/yr	TWh/yr
Africa	21.6	83.7	3,884	1,852	> 200
North America	164.1	675.6	8,054	3,012	> 1,500
South America	123.7	596.5	7,121	3,036	> 2,000
Asia	222.7	718.2	16,285	5,523	> 2,500
Europe	225.2	705.5	4,945	2,714	> 1,000
Middle East	7.2	16.9	418	168	> 100
Oceania	13.5	40.4	495	189	> 100
Total World	778.0	2,836.8	41,202	16,494	

Source: World Energy Council

BASIC OPERATING EQUATIONS FOR HYDROPOWER

Total power from hydropower including both static (PE) and dynamic (KE) contribution

 $Power = (total hydrualic head) \times (volumetric flow rate) \times (efficiency)$ $Power = (\rho gZ + 1/2\rho\Delta(v^2)) \times Q \times \varepsilon$

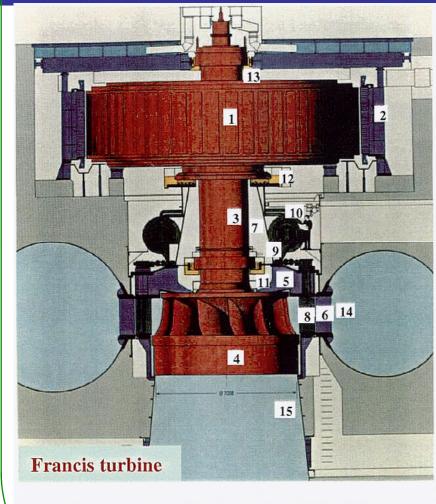
For impoundment hydro systems with only static hydraulic head (PE) recovered and no recovery of flowing head (KE)

Power = $9.81 \times 10^3 ZQ\varepsilon$ in watts = $9.81 \times 10^{-3} ZQ\varepsilon$ in MWe

TURBINE TYPES

- Impulse Turbine
 - Pelton
 - Turgo Wheel
 - Cross-Flow
- Reaction Turbine
 - Propeller
 - Bulb
 - Straflo
 - Tube
 - Kaplan
 - Francis
 - Kinetic

Images of turbines removed due to copyright restrictions.Please see "Types of Hydropower Turbines."U.S. Department of Energy, Energy Efficiency & Renewable Energy.Also see Turgo, Cross-Flow, Straflo, and Kinetic turbines.

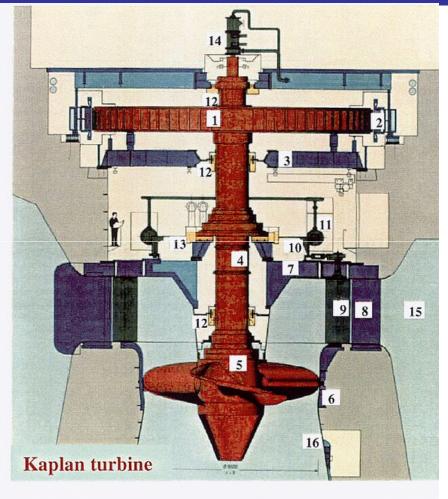

HYDROPOWER IS STRATEGICALLY IMPORTANT WORLDWIDE (2008)

- North America661,991 GWh/yr
- Central and South America 665,316 GWh/yr
- Africa 99,449 GWh/yr
- Asia and Oceania 878,332 GWh/yr

- Europe
 547,732 GWh/yr
- Eurasia
 222,254 GWh/yr
- Middle East
 25,064 GWh/yr

1,560 North American Plants (5,000 Units) 13,000 International Plants (42,000 Units) World Total = 3,100,139 GWh/yr World Total = \$50,000,000,000/yr

FRANCIS AND KAPLAN TURBINES



Generator Rotor
 Generator Stator
 Turbine Shaft
 Runner

5. Turbine Head Cover

6. Stay Ring Discharge Ring
 7. Supporting Cone
 8. Guide Vane
 9. Operating Ring
 10. Guide Vane Servomotor

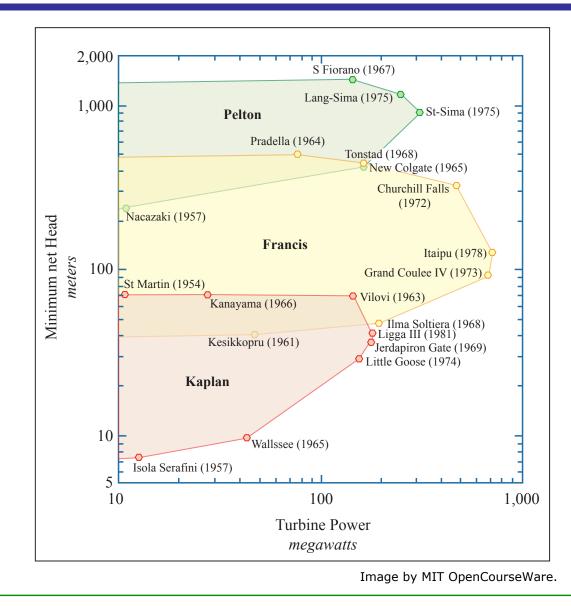
Lower Guide Bearing
 Thrust Bearing
 Upper Guide Bearing
 Spiral Case
 Draft Tube Cone

Generator Rotor
 Generator Stator
 Spider
 Turbine Shaft
 Runner
 Discharge Ring

 7. Turbine Cover
 13. Thrust

 8. Stay Ring
 14. Oil St

 9. Guide Vane
 15. Concr


 10. Operating Ring
 16. Draft

 11. Guide Vane Servomotor
 12. Guide Bearing

Thrust Bearing
 Oil Supply Head
 Concrete Semi-spiral Case
 Draft Tube Cone

Franke, Gary F,. et al. "Development of Environmentally Advanced Hydropower Turbine System Design Concepts." U.S. Department of Energy, Idaho National Engineering Laboratory (August 1997): INEEL/EXT-97-00639. http://dx.doi.org/10.2172/563213

HYDRAULIC TURBINES: DOMAINS OF HEAD AND SCALE IN THE ENGINEERING PRACTICE OF PELTON, FRANCIS AND KAPLAN TURBINES

Positive	Negative	
Emissions-free, with virtually no CO_2 , NO_x , SO_x , hydrocarbons, or particulates	Frequently involves impoundment of large amounts of water with loss of habitat due to land inundation	
Renewable resource with high conversion efficiency to electricity (80%)	Variable output - dependent on rainfall and snowfall	
Dispatchable with storage capability	Impacts on river flows and aquatic ecology, including fish migration and oxygen depletion	
Usable for base load, peaking, and pumped storage applications	Social impacts of displacing indigenous people	
Scalable from 10 kWe to 10,000 MWe	Health impact in developing countries	
Low operating and maintenance cost	High initial capital costs	
Long lifetime - 50 years typical	Long lead time in construction in mega-sized projects	

Image by MIT OpenCourseWare.

HYDRO POWER – ECONOMIC ISSUES

- Very capital intensive include "fuel costs"
- Large projects > 100 MWe have long lead times (4-6 yr)
- Long lifetimes and low operating and maintenance costs
- Large seasonal variation [factors of 2 to 10 in flow common]
- Costs very sensitive to natural terrain and climate e.g., compare Switzerland's mountainous relief and high rainfall to the flatter, dryer Midwestern regions of the US
- Installed costs range from about \$750/kW to \$2000/kW for 10-1000 MWe plants
- With intrinsic output variability need to inflate costs- typically range from \$1500 to 6000 per reliable kilowatt

HYDRO POWER – ENVIRONMENTAL AND SOCIAL ISSUES

- Land Use Inundation and Displacement of People
- Impacts on Natural Hydrology
 - Infiltration
 - Increase evaporative losses
 - Altering river flows and natural flooding cycles
 - Sedimentation/silting
- Water Chemistry Changes
 - Mercury, nitrates, oxygen
 - Bacterial and viral infections (maleria, schitosomiasis, cholera,...)

EFFECTS OF HYDROELECTRIC FACILITIES

- Biological Effects
 - Change in aquatic ecosystem species change
 - Damage to organisms passing through turbine
 - Oxygen depletion downstream of dams
 - Blockage of migration/breeding paths
 - Parasite growth

EFFECTS OF HYDROELECTRIC FACILITIES, cont'

- Physical Effects
 - Interruption of flooding cycles (silt, flood, transport)
 - Increased temperature
 - Increased evaporation
 - Increased leakage
 - Silting
 - Earthquakes
 - Dam failures and overtopping

SYMMARY – HYDROPOWER

- Is Simple, Ancient Technology
- Is the Most Important Industrial-Scale Renewable Energy Technology
- Is Largely Opposed by "Green" Lobbies
 - Opposition to new dams
 - Decommissioning of existing dams
- Disruptive Ecological and Hydraulically
- Catastrophic Failures are Possible

ARCHIVAL WEB SITES ON HYDROPOWER

- http://www.eere.energy.gov/basics/renewable_energy/hydropower.html
- http://www.worldenergy.org/
- http://hydropower.inel.gov/
- http://hydro.org/why-hydro/
- http://www.energy.ca.gov/hydroelectric/index.html
- http://www.unep.org/dams/WCD/
- http://www.ussdams.org

MIT OpenCourseWare http://ocw.mit.edu

22.081J / 2.650J / 10.291J / 1.818J / 2.65J / 10.391J / 11.371J / 22.811J / ESD.166J Introduction to Sustainable Energy Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.