Fossil Fuels I

Sustainable Energy Fall 2010

10/14/2010

Scope of this Session

- Cover the major power cycles for conversion of fossil fuels to electricity
 - Steam Cycles
 - Steam Turbines
 - Brayton Cycle
 - Gas Turbines
 - Combined Cycles

Understanding Steam Cycles

- Start with Carnot efficiency as upper limit
- Use reality to chip away at the efficiency
- Use tricks to maximize efficiency

Carnot Efficiency $\eta_{\text{Carnot}} \equiv \frac{\dot{W}_{\text{max}}}{\dot{Q}_{\text{H}}} = 1 - \frac{T_{\text{C}}}{T_{\text{H}}} \qquad \mathsf{T} \qquad \begin{array}{c} \mathbf{W} = \mathsf{Area} \\ \mathbf{W} = \mathsf{Area} \\ \mathbf{T}_{\mathsf{C}} \\ \mathbf{T}_{\mathsf{C}} \end{array}$

- Assumes Q_H is all available at T_H
- Assumes Q_C is all available at T_C
- Assumes Reversibility
 - No temperature driving force on heat exchangers
 - No pressure drops in exchangers or pipes
 - No entropy losses on turbines or pumps
- For T_H =1800 K, T_C =300 K, η_{Carnot} =83%

Reality 1

Heat Source Temperature not Constant

- Heat source may start at T_H but the temperature drops as heat is delivered
- Heat is maximized if hot medium exits at T_C
- Maximum work determined by integrating over this temperature profile (assume constant C_p)

$$\eta *_{\text{Carnot}} = 1 - \ln \left(\frac{T_{\text{H}}}{T_{\text{C}}} \right) / \left(\frac{T_{\text{H}}}{T_{\text{C}}} - 1 \right)$$

• For T_H =1800 K, T_C =300 K, $\eta *_{Carnot}$ =64%

Rankine cycle

Image removed due to copyright restrictions. Please see Fig. 14.7 in Tester, Jefferson W., and M. Modell. *Thermodynamics and its Applications*. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1996.

Reality 2 Working Fluid Phase Envelope Matters

Reality 3 Ambient Pressure not Hard Limit For Closed Cycles

Reality 4

Real Pumps and Turbines have Entropy Losses

Reality 5 Expanding into Two-Phase Region is a Problem

Turbine Exit Vapor Fraction is only 73%

Turbine Reality:

- Vapor fraction must exceed 90%
- Efficiency diminished by condensation in turbine

Sustainable Energy - Fall 2010 - Fossil Fuels I

Reheat Cycles Reheat between Turbines \rightarrow More Power & Dry Turbines

Reheat Cycles Reheat between Turbines \rightarrow More Power & Dry Turbines

Sustainable Energy - Fall 2010 - Fossil Fuels I

Regenerative Cycles

- Preheat with lower quality heat
 - Extract steam from turbines
 - Feedwater heaters
 - Open (Direct contact)
 - Closed (Indirect)

 $\begin{array}{l} \text{Extraction Factor} = 12\% \\ \eta_{\text{carnot}} = 55\% \\ \eta_{\text{real}} = 37\% \end{array}$

Real Steam Cycles

- Multiple steam pressure levels
- Multiple reheats
- Multiple extractions for feedwater heating
- Deaerator for oxygen removal
- Best performance at steam pressures $> P_c$
- Maximum steam temperature: ~ 600°C
- Economizer to recover heat from flue gas
- Fuel utilization is key metric for fossil fuel power

$$\eta_{\text{Fuel Utilization}} = \frac{W}{FuelFlow \times LHV}$$

Steam Rankine Cycle Summary

- Fuel flexible: works well with coal and other dirty fuels (closed cycle)
- Workhorse for nuclear and most solar thermal
- Low flow rate: thanks to high heat of vaporization
- Low pumping power
- But...
 - Limited by maximum steam temperatures due to material of construction constraints
 - High inertia: good for base load, not for load following
 - Requires cooling: a water hog for many power plants

Image removed due to copyright restrictions. Please see Fig. 14.5 in Tester, Jefferson W., and M. Modell. *Thermodynamics and its Applications*. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1996.

Siemens SST-500

Photo of a Siemens SST-500 steam turbine removed due to copyright restrictions.

Power output: up to 100 MW Rotational speed: up to 15,000 rpm Inlet steam pressure: up to 30 bar Inlet steam temperature: up to 400 °C Bleeds: up to 2, at various pressure levels

Brayton Cycle

Brayton Cycle = Rankine Cycle – Boiling – Condensation

Sustainable Energy - Fall 2010 - Fossil Fuels I

Evolution of Turbine Blade Technology

Image by MIT OpenCourseWare. Adapted from Pratt & Whitney.

Source: MIT Unified Engineering 16.003/16.004

Siemens Gas Turbine SGT5-8000H

Photo of a Siemens SGT5-8000H gas turbine removed due to copyright restrictions.

Power Output: 375 MW Efficiency: 40% Pressure Ratio: 19.2 Compression Stages: 13 Turbine Stages: 4

Brayton with Intercooling, Reheat and Regeneration

Images removed due to copyright restrictions. Please see Fig. 9-43 and 9-44 in Çengel, Yunus A., and Michael A. Boles. *Thermodynamics: An Engineering Approach.* 5th ed. Boston, MA: McGraw-Hill, 2006. ISBN: 9780072884951.

Gas Turbine Advantages

- Operate at high temperature \rightarrow Utilize fossil fuel combustion
- Start, stop, turn-down easily \rightarrow Load following and peaking
- Compact and easy to operate
- Operate at low pressures relative to steam turbines
- Internal combustion does not require heat transfer equipment
- Not as vulnerable to corrosion as steam turbines

Gas Turbine Disadvantages

- Open cycle limits exhaust pressure to ambient pressure
- Exhaust temperature well above ambient
- Efficiency limited by high compression work
- Cannot use dirty fuels (particulate & sulfur damage blades)
- Exhaust temperature well above ambient

Combined Cycle Most common combined cycle = Brayton + Rankine

Efficiency $\approx 60\%$

Image removed due to copyright restrictions. Please see Fig. 7 in Langston, Lee S., and George Opdyke, Jr. "Introduction to Gas Turbines for Non-Engineers." *Global Gas Turbine News* 37 (1997).

Figure at right from U.S. Department of Energy.

Sources: MIT Unified Engineering [Lee Langston]; US Department of Energy

MIT OpenCourseWare http://ocw.mit.edu

22.081J / 2.650J / 10.291J / 1.818J / 2.65J / 10.391J / 11.371J / 22.811J / ESD.166J Introduction to Sustainable Energy Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.