## Toolbox 7: Economic Feasibility Assessment Methods

Dr. John C. Wright

MIT - PSFC
05 OCT 2010


## Introduction

$\square$ We have a working definition of sustainability
$\square$ We need a consistent way to calculate energy costs
$\square$ This helps to make fair comparisons
$\square$ Good news: most energy costs are quantifiable
$\square$ Bad news: lots of uncertainties in the input data
■ Interest rates over the next 40 years

- Cost of natural gas over the next 40 years
- Will there be a carbon tax?
$\square$ Today's main focus is on economics
$\square$ Goal: Show how to calculate the cost of energy in cents/kWhr for any given option
$\square$ Discuss briefly the importance of energy gain


## Basic Economic Concepts

$\square$ Use a simplified analysis
$\square$ Discuss return on investment and inflation
$\square$ Discuss net present value
$\square$ Discuss levelized cost

## The Value of Money

$\square$ The value of money changes with time
$\square 40$ years ago a car cost \$2,500
$\square$ Today a similar car may cost $\$ 25,000$
$\square$ A key question - How much is a dollar $n$ years from now worth to you today?
$\square$ To answer this we need to take into account
■ Potential from investment income while waiting

- Inflation while waiting


## Present Value

$\square$ Should we invest in a power plant?
$\square$ What is total outflow of cash during the plant lifetime?
$\square$ What is the total revenue income during the plant lifetime
$\square$ Take into account inflation
$\square$ Take into account rate of return
$\square$ Convert these into today's dollars
$\square$ Calculate the "present value" of cash outflow
$\square$ Calculate the "present value" of revenue

## Net Present Value

$\square$ Present value of cash outflow: $\mathrm{PV}_{\text {cost }}$
$\square$ Present value of revenue: $\mathrm{PV}_{\text {rev }}$
$\square$ Net present value is the difference

$$
\mathrm{NPV}=P V_{\mathrm{rev}}-P V_{\mathrm{cost}}
$$

$\square$ For an investment to make sense

$$
\mathrm{NPV}>0
$$

## Present Value of Cash Flow

$\square \quad \$ 100$ today is worth $\$ 100$ today - obvious
$\square$ How much is $\$ 100$ in 1 year worth to you today?
$\square$ Say you start off today with $\$ P_{i}$
$\square$ Invest it at a yearly rate of $i_{R} \%=10 \%$
$\square$ One year from now you have $\$\left(1+i_{R}\right) P_{i}=\$ 1.1 P_{i}$
$\square$ Set this equal to $\$ 100$
$\square$ Then

$$
P_{i}=\frac{\$ 100}{1+i_{R}}=\frac{\$ 100}{1.1}=\$ 90.91
$$

$\square$ This is the present value of $\$ 100$ a year from now

## Generalize to $n$ years

$\square$ \$P $n$ years from now has a present value to you today of

$$
P V(P)=\frac{P}{\left(1+i_{R}\right)^{n}}
$$

$\square$ This is true if you are spending $\$ \mathrm{P} n$ years from now
$\square$ This is true for revenue $\$$ P you receive $n$ years from now
$\square$ Caution: Take taxes into account $i_{R}=\left(1-i_{\text {Tax }}\right) i_{\text {Tot }}$

## The Effects of Inflation

$\square$ Assume you buy equipment $n$ years from now that costs $\$ P_{n}$
$\square$ Its present value is

$$
P V\left(P_{n}\right)=\frac{P_{n}}{\left(1+i_{R}\right)^{n}}
$$

$\square$ However, because of inflation the future cost of the equipment is higher than today's price
$\square$ If $\mathrm{i}_{\mathrm{I}}$ is the inflation rate then

$$
P_{n}=\left(1+i_{I}\right)^{n} P_{i}
$$

## The Bottom Line

$\square$ Include return on investment and inflation
$\square \$ P_{i} n$ years from now has a present value to you today of

$$
P V=\left(\frac{1+i_{I}}{1+i_{R}}\right)^{n} P_{i}
$$

$\square$ Clearly for an investment to make sense

$$
i_{R}>i_{I}
$$

## Costing a New Nuclear Power Plant

$\square$ Use NPV to cost a new nuclear power plant
$\square$ Goal: Determine the price of electricity that

- Sets the NPV $=0$

■ Gives investors a good return
$\square$ The answer will have the units cents/kWhr

## Cost Components

$\square$ The cost is divided into 3 main parts

$$
\text { Total }=\text { Capital }+ \text { O\&M }+ \text { Fuel }
$$

$\square$ Capital: Calculated in terms of hypothetical "overnight cost"
$\square$ O\&M: Operation and maintenance
$\square$ Fuel: Uranium delivered to your door
$\square$ "Busbar" costs: Costs at the plant
$\square$ No transmission and distribution costs

## Key Input Parameters

$\square$ Plant produces $\mathrm{P}_{\mathrm{e}}=1 \mathrm{GWe}$
$\square$ Takes $T_{C}=5$ years to build
$\square$ Operates for $T_{P}=40$ years
$\square$ Inflation rate $\mathrm{i}_{\mathrm{I}}=3 \%$
$\square$ Desired return on investment $\mathrm{i}_{\mathrm{R}}=12 \%$

## Capital Cost

$\square$ Start of project: Now $=2000 \rightarrow$ year $n=0$
$\square$ Overnight cost: $\mathrm{P}_{\text {over }}=\$ 2500 \mathrm{M}$
$\square$ No revenue during construction
$\square$ Money invested at $\mathrm{i}_{\mathrm{R}}=12 \%$
$\square$ Optimistic but simple
$\square$ Cost inflates by $\mathrm{i}_{\mathrm{I}}=3 \%$ per year

## Construction Cost Table

| Year | Construction <br> Dollars | Present <br> Value |
| :---: | :---: | :---: |
| 2000 | 500 M | 500 M |
| 2001 | 515 M | 460 M |
| 2002 | 530 M | 423 M |
| 2003 | 546 M | 389 M |
| 2004 | 563 M | 358 M |

## Mathematical Formula

$\square$ Table results can be written as

$$
P V_{C A P}=\frac{P_{\text {over }}}{T_{C}} \sum_{\mathrm{n}=0}^{\mathrm{T}_{\mathrm{c}}-1}\left(\frac{1+i_{I}}{1+i_{R}}\right)^{n}
$$

$\square$ Sum the series

$$
\begin{aligned}
P V_{C A P} & =\frac{P_{\text {over }}}{T_{C}}\left(\frac{1-\alpha^{T_{C}}}{1-\alpha}\right)=\$ 2129 M \\
\alpha & =\frac{1+i_{I}}{1+i_{R}}=0.9196
\end{aligned}
$$

## Operations and Maintenance

$\square$ O\&M covers many ongoing expenses

- Salaries of workers
- Insurance costs
- Replacement of equipment
- Repair of equipment
$\square$ Does not include fuel costs


## Operating and Maintenance Costs

$\square$ O\&M costs are calculated similar to capital cost
$\square$ One wrinkle: Costs do not occur until operation starts in 2005
$\square$ Nuclear plant data shows that O\&M costs in 2000 are about

$$
P_{O M}=\$ 95 M / y r
$$

$\square$ O\&M work the same every year

## Formula for O\&M Costs

$\square$ During any given year the PV of the O\&M costs are

$$
P V_{O M}^{(n)}=P_{O M}\left(\frac{1+i_{I}}{1+i_{R}}\right)^{n}
$$

$\square$ The PV of the total O\&M costs are

$$
\begin{aligned}
P V_{O M} & =\sum_{\mathrm{n}=\mathrm{T}_{\mathrm{C}}}^{\mathrm{T}_{\mathrm{C}}+\mathrm{T}_{\mathrm{p}}-1} P V_{O M}^{(n)} \\
& =P_{O M} \sum_{n=T_{C}}^{T_{C}+T_{P}-1}\left(\frac{1+i_{I}}{1+i_{R}}\right)^{n} \\
& =P_{O M} \alpha^{T_{C}}\left(\frac{1-\alpha^{T_{P}}}{1-\alpha}\right)=\$ 750 M
\end{aligned}
$$

## Fuel Costs

$\square$ Cost of reactor ready fuel in $2000 K_{F}=\$ 2000 / \mathrm{kg}$
$\square$ Plant capacity factor $f_{c}=0.85$
$\square$ Thermal conversion efficiency $\eta=0.33$
$\square$ Thermal energy per year

$$
W_{t h}=\frac{f_{c} P_{e} T}{\eta}=\frac{(0.85)\left(10^{6} k W e\right)(8760 h r)}{(0.33)}=2.26 \times 10^{10} \mathrm{kWhr}
$$

$\square$ Fuel burn rate $B=1.08 \times 10^{6} \mathrm{kWhr} / \mathrm{kg}$
$\square$ Yearly mass consumption

$$
M_{F}=\frac{W_{t h}}{B}=2.09 \times 10^{4} \mathrm{~kg}
$$

## Fuel Formula

$\square$ Yearly cost of fuel in 2000

$$
P_{F}=K_{F} M_{F}=\$ 41.8 M / y r
$$

$\square$ PV of total fuel costs

$$
P V_{F}=P_{F} \alpha^{T_{C}}\left(\frac{1-\alpha^{T_{P}}}{1-\alpha}\right)=\$ 330 M
$$

## Revenue

$\square$ Revenue also starts when the plant begins operation
$\square$ Assume a return of $i_{R}=12 \%$
$\square$ Denote the cost of electricity in 2000 by COE measured in cents/kWhr
$\square$ Each year a 1 GWe plant produces

$$
W_{e}=\eta W_{t h}=74.6 \times 10^{8} \mathrm{kWhr}
$$

## Formula for Revenue

$\square$ The equivalent sales revenue in 2000 is

$$
P_{R}=\frac{(C O E)\left(W_{e}\right)}{100}=\frac{(C O E) f_{c} P_{e} T}{100}=(\$ 74.6 M) \times C O E
$$

$\square$ The PV of the total revenue

$$
P V_{R}=P_{R} \alpha^{T_{C}}\left(\frac{1-\alpha^{T_{P}}}{1-\alpha}\right)=\$(74.6 M)(C O E) \alpha^{T_{C}}\left(\frac{1-\alpha^{T_{P}}}{1-\alpha}\right)
$$

## Balance the Costs

$\square$ Balance the costs by setting NPV $=0$

$$
P V_{R}=P V_{\text {cons }}+P V_{O M}+P V_{F}
$$

$\square$ This gives an equation for the required $C O E$

$$
\begin{aligned}
\text { COE } & =\frac{100}{f_{c} P_{e} T}\left[\frac{P_{\text {over }}}{T_{C}} \frac{1}{\alpha^{T_{C}}}\left(\frac{1-\alpha^{T_{C}}}{1-\alpha^{T_{P}}}\right)+P_{O M}+P_{F}\right] \\
& =\quad 3.61+1.27+0.56=5.4 \text { cents } / \mathrm{kWhr}
\end{aligned}
$$

## Potential Pitfalls and Errors

$\square$ Preceding analysis shows method
$\square$ Preceding analysis highly simplified
$\square$ Some other effects not accounted for
■ Fuel escalation due to scarcity

- A carbon tax

■ Subsidies (e.g. wind receives 1.5 cents/kWhr)

## More

$\square$ More effects not accounted for

- Tax implications - income tax, depreciation

■ Site issues - transmission and distribution costs
■ Cost uncertainties - interest, inflation rates

- O\&M uncertainties - mandated new equipment
■ Decommissioning costs
■ By-product credits - heat
■ Different $f_{c}$ - base load or peak load?


## Economy of Scale

$\square$ An important effect not included
$\square$ Can be quantified
$\square$ Basic idea - "bigger is better"
$\square$ Experience has shown that

$$
\frac{C_{c a p}}{P_{e}}=\frac{C_{r e f}}{P_{r e f}}\left(\frac{P_{r e f}}{P_{e}}\right)^{\alpha}
$$

$\square$ Typically $\alpha \approx 1 / 3$

## Why?

$\square$ Consider a spherical tank
$\square$ Cost $\propto$ Material $\propto$ Surface area: $C \propto 4 \pi R^{2}$
$\square \quad$ Power $\propto$ Volume: $P \propto(4 / 3) \pi R^{3}$
$\square$ COE scaling: $C / P \propto 1 / R \propto 1 / P^{1 / 3}$
$\square$ Conclusion:

$$
\frac{C_{c a p}}{C_{r e f}}=\left(\frac{P_{e}}{P_{r e f}}\right)^{1-\alpha}
$$

$\square$ This leads to plants with large output power

## The Learning Curve

$\square$ Another effect not included
$\square$ The idea - build a large number of identical units
$\square$ Later units will be cheaper than initial units
$\square$ Why? Experience + improved construction
$\square$ Empirical evidence - cost of $\mathrm{n}^{\text {th }}$ unit

$$
\begin{aligned}
& C_{n}=C_{1} n^{-\beta} \\
& \beta \approx-\frac{\ln f}{\ln 2}
\end{aligned}
$$

$\square \mathrm{f}=$ improvement factor / unit: $f \sim 0.85 \rightarrow \beta=0.23$

## An example - Size vs. Learning

$\square \quad$ Build a lot of small solar cells (learning curve)?
$\square$ Or fewer larger solar cells (economy of scale)?
$\square$ Produce a total power $P_{e}$ with $N$ units
$\square$ Power per unit: $p_{e}=P_{e} / N$
$\square$ Cost of the first unit with respect to a known reference

$$
C_{1}=C_{r e f}\left(\frac{p}{p_{r e f}}\right)^{1-\alpha}=C_{r e f}\left(\frac{N_{r e f}}{N}\right)^{1-\alpha}
$$

## Example - cont.

$\square$ Cost of the $n^{\text {th }}$ unit

$$
C_{n}=C_{1} n^{-\beta}=C_{r e f}\left(\frac{N_{r e f}}{N}\right)^{1-\alpha} n^{-\beta}
$$

$\square$ Total capital cost: sum over separate units

$$
\begin{aligned}
C_{c a p} & =\sum_{n=1}^{N} C_{n}=C_{r e f}\left(\frac{N_{r e f}}{N}\right)^{1-\alpha} \sum_{n=1}^{N} n^{-\beta} \approx C_{r e f}\left(\frac{N_{r e f}}{N}\right)^{1-\alpha} \int_{1}^{N} n^{-\beta} d n \\
& =\frac{C_{r e f} N_{r e f}^{1-\beta}}{1-\beta} N^{\alpha-\beta} \propto N^{\alpha-\beta}
\end{aligned}
$$

$\square$ If $\alpha>\beta$ we want a few large units
$\square$ It's a close call - need a much more accurate calculation

## Dealing With Uncertainty

$\square$ Accurate input data $\rightarrow$ accurate COE estimate
$\square$ Uncertain data $\rightarrow$ error bars on COE
$\square$ Risk $\propto$ size of error bars
$\square$ Quantify risk $\rightarrow$ calculate COE $\pm$ standard deviation
$\square$ Several ways to calculate $\sigma$, the standard deviatiation

- Analytic method
- Monte Carlo method
- Fault tree method
$\square$ We focus on analytic method


## The Basic Goal

$\square$ Assume uncertainties in multiple pieces of data
$\square$ Goal: Calculate $\sigma$ for the overall COE including all uncertainties
$\square$ Plan:

- Calculate $\sigma$ for a single uncertainty
- Calculate $\sigma$ for multiple uncertainties


## The Probability Distribution Function

$\square$ Assume we estimate the most likely cost for a given COE contribution.
$\square$ E.g. we expect the COE for fuel to cost $C=1$ cent/kWhr
$\square$ Assume there is a bell shaped curve around this value
$\square$ The width of the curve measures the uncertainty
$\square$ This curve $P(C)$ is the probability distribution function
$\square$ It is normalized so that its area is equal to unity

$$
\int_{0}^{\infty} P(C) d C=1
$$

$\square \quad$ The probability is 1 that the fuel will cost something

## The Average Value

$\square$ The average value of the cost is just

$$
\bar{C}=\int_{0}^{\infty} C P(C) d C
$$

$\square$ The normalized standard deviation is defined by

$$
\sigma=\frac{1}{\bar{C}}\left[\int_{0}^{\infty}(C-\bar{C})^{2} P(C) d C\right]^{1 / 2}
$$

$\square \quad$ A Gaussian distribution is a good model for $P(C)$

$$
P(C)=\frac{1}{(2 \pi)^{1 / 2} \sigma \bar{C}} \exp \left[-\frac{(C-\bar{C})^{2}}{2(\sigma \bar{C})^{2}}\right]
$$

## Multiple Uncertainties

- Assume we know $\bar{C}$ and $\sigma$ for each uncertain cost.
$\square$ The values of $\bar{C}$ are what we used to determine COE.
$\square$ Specifically the total average cost is the sum of the separate costs:

$$
\bar{C}_{T o t}=\sum_{j} \int C_{j} P_{j}\left(C_{j}\right) d C_{j}=\sum \bar{C}_{j}
$$

- The total standard deviation is the root of quadratic sum of the separate contributions (assuming independence of the $C_{j}$ ) again normalized to the mean:

$$
\sigma_{T o t}=\frac{\sqrt{\sum_{j}\left(\bar{C}_{j} \sigma_{j}\right)^{2}}}{\sum_{j} \bar{C}_{j}}
$$

## An Example

$\square$ We need weighting - why?

- Low cost entities with a large standard deviation do not have much effect of the total deviation
$\square$ Consider the following example
- $C_{c a p}=3.61, \sigma_{c}=0.1$
- $C_{O \& M}=1.27, \sigma_{\text {OM }}=0.15$
- $C_{\text {fuel }}=0.56, \sigma_{f}=0.4$


## Example Continued

- The total standard deviation is then given by

$$
\begin{aligned}
\sigma & =\frac{\sqrt{\left(\sigma_{c} \bar{C}_{c a p}\right)^{2}+\left(\sigma_{O M} \bar{C}_{O \& M}\right)^{2}+\left(\sigma_{f} \bar{C}_{\text {fuel }}\right)^{2}}}{\bar{C}_{\text {cap }}+\bar{C}_{\text {O\&M }}+\bar{C}_{\text {fuel }}} \\
& =\frac{\sqrt{0.130+0.0363+0.0502}}{5.4}=0.086
\end{aligned}
$$

$\square$ Large $\sigma_{f}$ has a relatively small effect.
$\square$ Why is the total uncertainty less than the individual ones? (Regression to the mean)

MIT OpenCourseWare
http://ocw.mit.edu
22.081J / 2.650J / 10.291J / 1.818J / 2.65J / 10.391J / 11.371J / 22.811J / ESD.166J

Introduction to Sustainable Energy
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

