Toolbox: Electrical Systems Dynamics

Dr. John C. Wright

MIT - PSFC

05 OCT 2010

OUTLINE

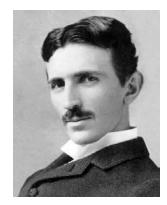
- AC and DC power transmission
- Basic electric circuits
- Electricity and the grid

Image removed due to copyright restrictions. Please see "How Electricity Gets from the Power Station to your Home." PowerWise Teacher's Center, 2007.

"The war of the currents"

Pros and Cons

- One kills elephants
- One has simpler infrastructure
- Why do we have AC and not DC?
- Look at a simple transmission circuit to decide.
- Use Voltage=120 VDC and Power=1.2 GW



Tesla Version of the second se

Edison

EFFICIENT TRANSMISSION REQUIRES AC

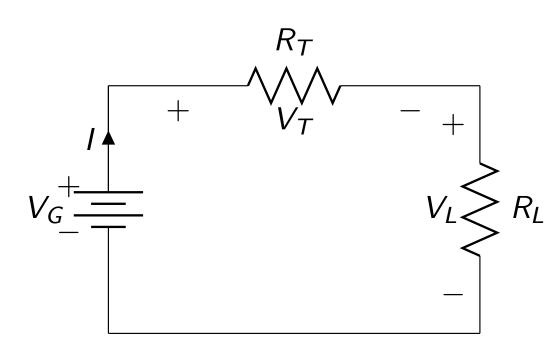
AC

□ Goals of the analysis

- Find the generator voltage
- Find the power delivered by the generator
- Find the power dissipated by the transmission line
- Find the ratio $P_{\text{Trans}}/P_{\text{Load}}$

4

A SIMPLE ELECTRIC CIRCUIT



- **D** The current $I = \frac{V_L}{R_l}$
- □ The power to the load $P_L = I^2 R_L = \frac{V_L^2}{R_L}$
- □ Equating currents (from Kirchhoff's Laws), the transmission line power $P_T = I^2 R_T = \frac{R_T V_L^2}{R_L}$
- □ The power ratio is then the ratio of resistances: $\frac{P_T}{P_L} = \frac{R_T}{R_L}$
- □ Generator power

$$P_G = P_L + P_T = \left(1 + \frac{R_T}{R_L} \frac{V_L^2}{R_L}\right)$$

□ Generator voltage $V_G = \frac{P_G}{I} = 1 + \left(\frac{R_T}{R_L}\right) V_L$

Efficiency requires most power is dissipated in the load

AC

Example for Al and household V

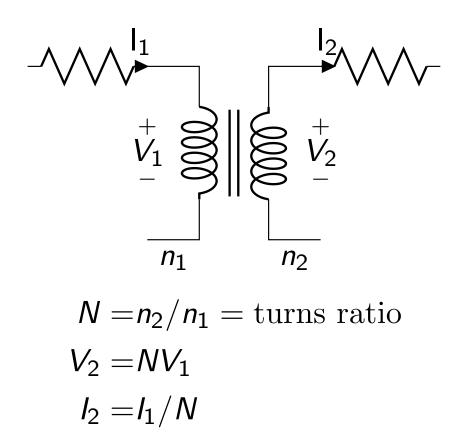
- □ If $R_T/R_L \ll 1$, then $P_T \ll P_L$
- Most of the voltage appears across the load.
- So, we have very small transmission losses.

- \square For $P_L = 1.2$ GW and $V_L = 120$ V
- $\square \text{ Then } R_L = P_L / V_L^2 = 1.2 \times 10^{-5} \Omega$
- For transmission assume L = 50 km (a short distance)
- An Aluminum cable with A = 5 cm² (to minimize sag, Cu not used.)
- \square Resistivity of Al, $\eta = 2.8 \times 10^{-8} \Omega\text{-m}$
- $\Box \therefore R_T = \eta L/A = 2.8\Omega \gg R_L$
- □ Conclusion: not so good!

AC CAN BE USED TO INCREASE THE VOLTAGE

- □ With AC we can use transformers
- □ Step up the voltage at the generator
- □ Transmit power at high voltage, low current
- □ Step down the voltage at the load
- □ Transmitting at low current should reduce transmission losses

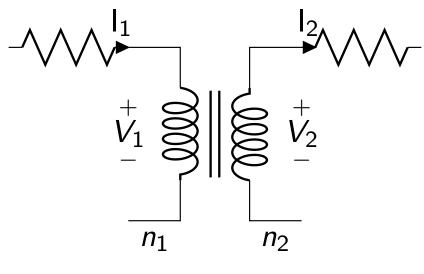
AN IDEAL TRANSFORMER



Physical process is conservation of magnetic flux/energy

AN IDEAL TRANSFORMER

Common examples of transformers:



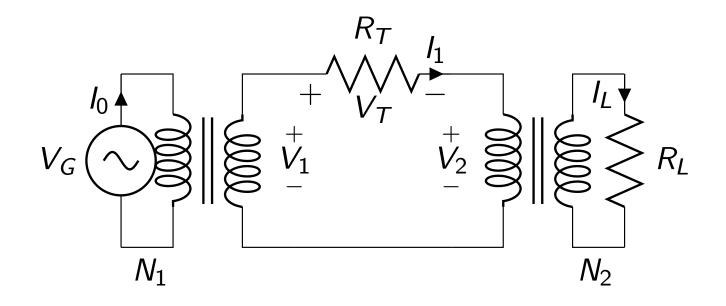
$$N = n_2/n_1 = \text{turns ratio}$$

 $V_2 = NV_1$
 $I_2 = I_1/N$

Physical process is conservation of magnetic flux/energy

Bottom right: Photo by mdverde on Flickr. Bottom left: Image by Tau Zero on Flickr. Top right: Photo by brewbooks on Flickr.

AC TRANSMISSION REDUCES LOSSES



- \square As before, $P_L=1.2$ GW, $V_L=120$ V , $R_L=1.2\times 10^{-5}\Omega$
- □ What are transformer and transmission requirements,
- **□** Such that $P_T \ll P_L$?

From the circuit:

$$P_L = V_L I_L = R_L I_L^2$$
$$P_T = V_T I_1 = R_T I_1^2$$

□ From the transformer relation, $I_L = N_2 I_1$, it follows

$$\frac{P_T}{P_L} = \frac{1}{N_2^2} \frac{R_T}{R_L}$$

AC Analysis

□ From the circuit:

$$P_L = V_L I_L = R_L I_L^2$$
$$P_T = V_T I_1 = R_T I_1^2$$

□ From the transformer relation, $I_L = N_2 I_1$, it follows

$$\frac{P_T}{P_L} = \frac{1}{N_2^2} \frac{R_T}{R_L}$$

□ For $N_2 \gg 1$ a huge reduction in transmission losses

Practical numbers:

$$V_0 = 12kV, V_1 = 240kV$$
 (rms)

- \square This implies that $N_1 = V_1/V_0 = 20$
- □ Assume small voltage drop across the transmission line. Then $V_2 \approx V_1$
- Second turn ratio becomes $N_2 = V_2/V_L = 2000$
- □ Our transmission loss formula gives $P_T/P_L \approx 6\%$

The downside to AC: Reactive power

- □ A down side to AC: Reactive power
- □ Why? Load is not pure resistive
- Load usually has an inductive component
- Resistance absorbs power
- □ Inductor circulates power back and forth
- □ This oscillating power is the reactive power

RESISTORS, INDUCTORS AND CAPACITORS, OH MY!

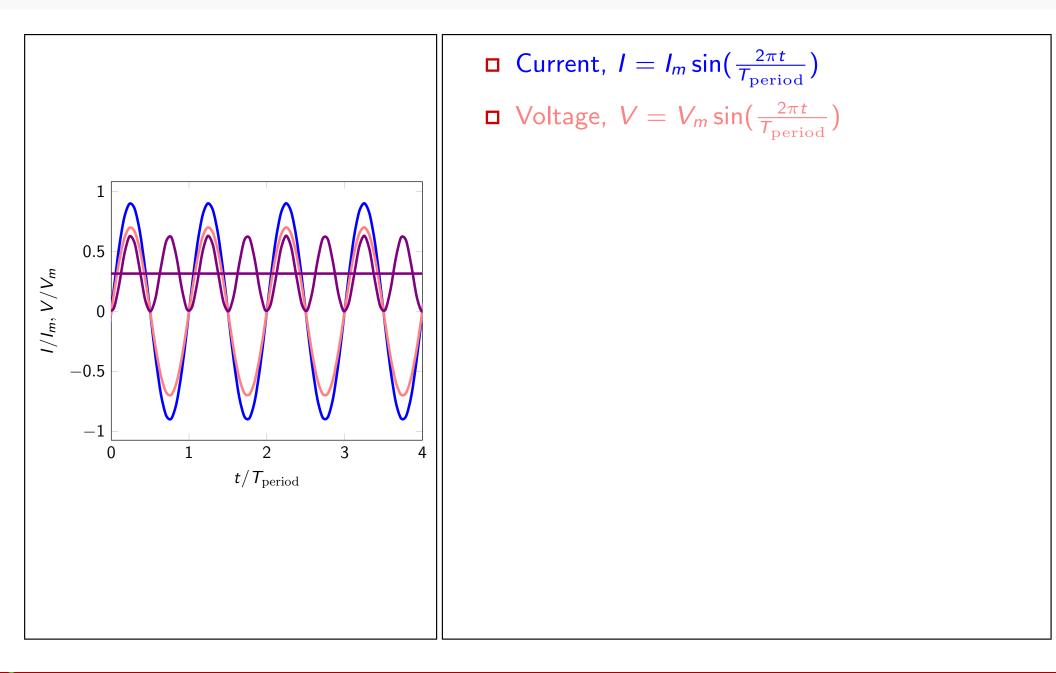
There are three basic circuit elements having different Ohm's laws.

Element	Resistor	Inductor	Capacitor
Symbol	R -	L -7000-	C
Ohm's Law	V = RI	$V = L \frac{dI}{dt}$	$\frac{dV}{dt} = I/C$
$I = \sin \omega t$	$V = R \sin \omega t$	$V = L \cos \omega t$	$V = -\frac{1}{C}\cos\omega t$
Phase shift	0	$\pi/2$	$-\pi/2$
Impedance $Z[\Omega] = V/I$	R	jωL	$\frac{-j}{\omega C}$

Reactive power

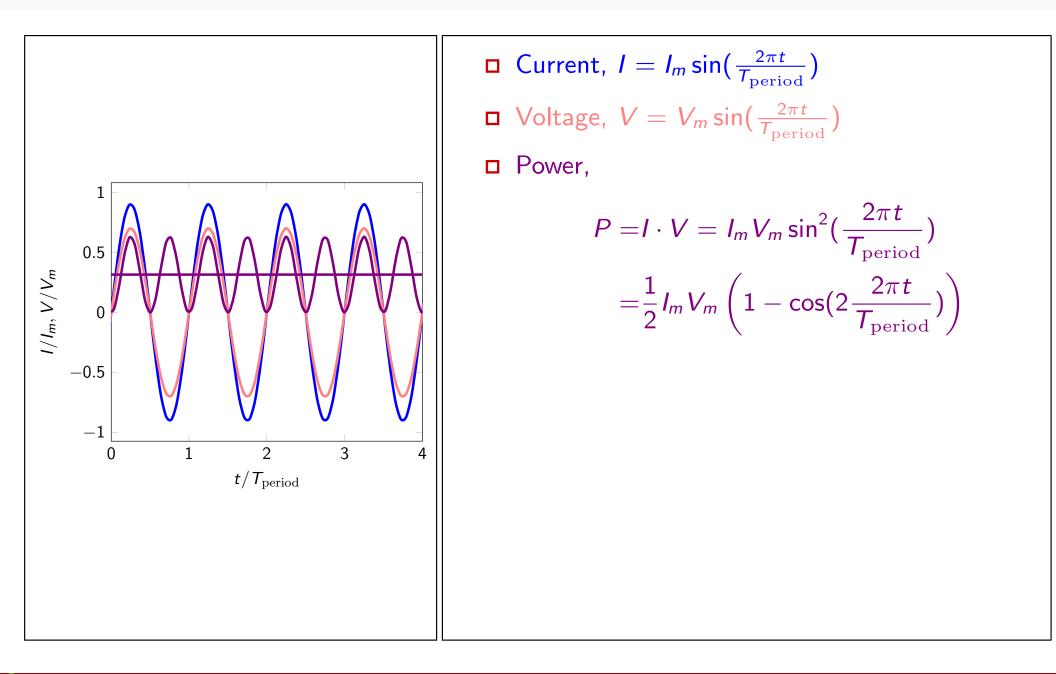
AC

PHASE LAGS INCREASE REACTIVE POWER



AC Reactive power

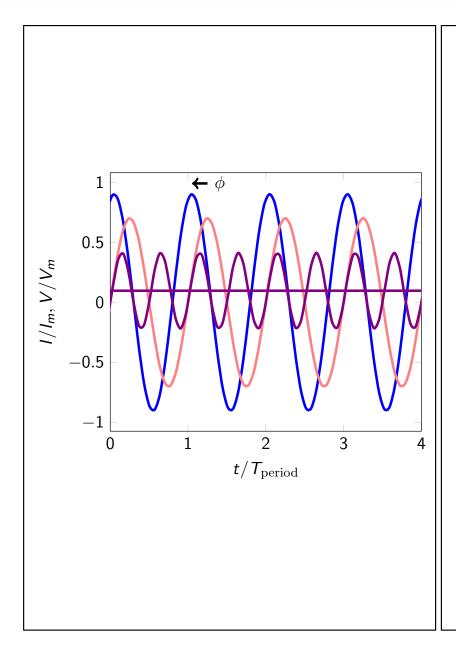
PHASE LAGS INCREASE REACTIVE POWER



Reactive power

AC

PHASE LAGS INCREASE REACTIVE POWER



 $\Box \text{ Current, } I = I_m \sin(\frac{2\pi t}{T_{\text{period}}} + \phi)$

• Voltage,
$$V = V_m \sin(\frac{2\pi t}{T_{\text{period}}})$$

□ Power,

$$P = I \cdot V = I_m V_m \sin\left(\frac{2\pi t}{T_{\text{period}}}\right) \sin\left(\frac{2\pi t}{T_{\text{period}}} + \phi\right)$$
$$= \frac{1}{2} I_m V_m \left(\cos(\phi) - \cos\left(2\frac{2\pi t}{T_{\text{period}}} + \phi\right)\right)$$

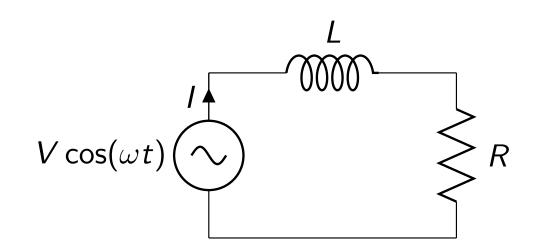
 $\cos(\phi)$ is known as the power factor

REACTIVE POWER MUST BE SUPPLIED.

- For parts of the AC cycle the instantaneous power is greater than the average power
- Generator must be able to deliver this higher power even though it is returned later
- Bottom line: generator must have a higher volt-amp rating than average power delivered: VARs and Watts.
- \square Higher rating \rightarrow bigger size \rightarrow higher cost

PHASE SHIFTS ARE INTRODUCED BY INDUCTANCE

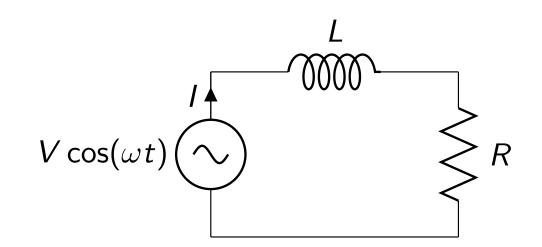
 \square A motor will have an inductance, *L*.



PHASE SHIFTS ARE INTRODUCED BY INDUCTANCE

 \square A motor will have an inductance, L.

□ It will introduce a phase shift given by $tan \phi = \frac{\omega L}{R}$

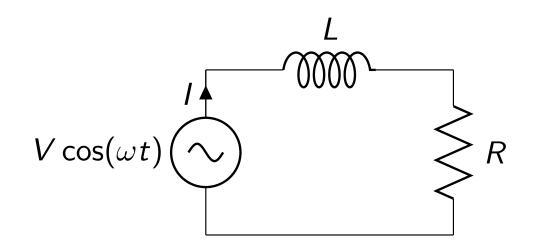


AC Reactive power

PHASE SHIFTS ARE INTRODUCED BY INDUCTANCE

- \square A motor will have an inductance, L.
- □ It will introduce a phase shift given by $tan \phi = \frac{\omega L}{R}$
- □ Amplitude of current will also be reduced.

$$I = \frac{V}{(\omega^2 L^2 + R^2)^{1/2}}$$



AC Reactive power

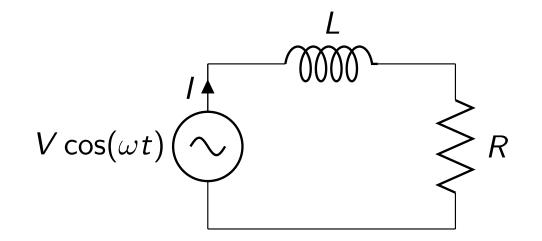
PHASE SHIFTS ARE INTRODUCED BY INDUCTANCE

- \square A motor will have an inductance, L.
- □ It will introduce a phase shift given by $tan \phi = \frac{\omega L}{R}$
- □ Amplitude of current will also be reduced.

$$I = \frac{V}{(\omega^2 L^2 + R^2)^{1/2}}$$

□ This all follows from adding up the voltages for a simple circuit:

$$L\frac{dI}{dt} + RI = V\cos(\omega t)$$



How to minimize the VA requirement?

AC

- \square To minimize the VA requirements on the generator we want $\phi \rightarrow 0$
- \square Assume the average power absorbed by the load is $\langle P_L \rangle$
- \square Calculate the peak generator power $[P_G(t)]_{\max}$ as a function of $\langle P_L \rangle$
- **\square** Note: The peak is $2 \times$ (rms volt-amp rating)
- □ Less generator power is cheaper.

PEAK POWER FROM INDUCTANCE

□ The power dissipated in the load:

$$\langle P_L
angle = RI^2$$

 $= rac{RV^2}{\omega^2 L^2 + R^2}$

□ The peak power delivered by the generator

$$P_{\text{peak}} = VI \left(1 + \cos \phi \right) = \frac{V^2}{\left(\omega^2 L^2 + R^2 \right)^{1/2}} \left(1 + \frac{R}{\left(\omega^2 L^2 + R^2 \right)^{1/2}} \right)$$

 \square Using the expression for $\langle P_L \rangle$, we get:

$$\frac{P_{\text{peak}}}{2\langle P_L\rangle} = \frac{\left(\omega^2 L^2 + R^2\right)^{1/2} + R}{2R} \ge 1$$

CAPACITANCE CAN BALANCE OUT REACTIVE POWER

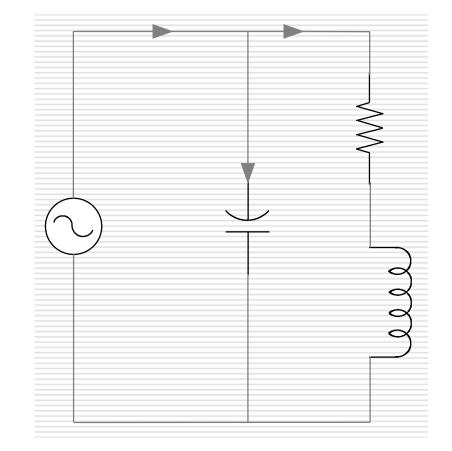
Recall from our table that the phase lags are opposite for inductance and capacitance

 \Box tan $\phi_L = \frac{\omega L}{R}$, tan $\phi_C = \frac{-1}{\omega C}$

Short answer: there is a capacitance that will keep the current and voltage in phase (but not eliminate the power factor)

$$C = \frac{L}{R^2 + \omega^2 L^2}$$

□ Long answer follows.



Analysis

I – V relation for a capacitor

$$\hat{I}_1(t) = C \frac{dV_G}{dt}$$

I – V relation for the load

$$V_{\scriptscriptstyle G} = R \hat{I}_2 + L \frac{d \hat{I}_2}{dt}$$

Conservation of current

$$\hat{I}(t) = \hat{I}_1(t) + \hat{I}_2(t)$$

Solution

- □ Assume $V_G = V \cos(\omega t)$ (all voltages now rms)
- Current in the capacitor branch

$$\hat{I}_1(t) = -\omega CV \sin(\omega t)$$

Current in the load branch (from before)

$$\hat{I}_2(t) = \frac{V}{\left(R^2 + \omega^2 L^2\right)^{1/2}} \cos(\omega t - \phi)$$

The total current

□ The total current flowing from the generator

$$\begin{split} \hat{I}(t) &= \hat{I}_1(t) + \hat{I}_2(t) \\ &= V \Biggl[\frac{\cos(\omega t - \phi)}{\left(R^2 + \omega^2 L^2\right)^{1/2}} - \omega C \sin(\omega t) \Biggr] \\ &= V \Biggl\{ \frac{\cos(\omega t) \cos \phi}{\left(R^2 + \omega^2 L^2\right)^{1/2}} + \Biggl[\frac{\sin \phi}{\left(R^2 + \omega^2 L^2\right)^{1/2}} - \omega C \Biggr] \sin(\omega t) \Biggr\} \end{split}$$

The value of C

- Choose C for zero reactive power
- Set sin(t) coefficient to zero

$$\omega C = \frac{\sin \phi}{\left(R^2 + \omega^2 L^2\right)^{1/2}}$$

Simplify by eliminating the power factor

$$C = \frac{L}{\left(R^2 + \omega^2 L^2\right)}$$

Calculate the peak power

Calculate the peak power to learn what has happened to the VA rating

$$egin{aligned} \mathcal{P}_{peak} &= \left[P_G(t)
ight]_{ ext{max}} = 2 \left[VI
ight]_{ ext{max}} \ &= 2 V^2 \, rac{\cos \phi}{(R^2 + \omega^2 L^2)^{1/2}} \ &= 2 rac{R \, V^2}{(R^2 + \omega^2 L^2)} \ &= 2 \left\langle P_L
ight
angle \end{aligned}$$

The Result

□ It worked!!

The VA requirement has been reduced

$$VA = \frac{P_{peak}}{2} = \left\langle P_L \right\rangle$$

DISCUSSION

- □ AC is good for transmission
- □ Have to manage reactive power

Other aspects:

- HVDC transmission lines
- □ AC losses from corona discharge
- Voltage and frequency tolerances
- Stability of the grid to perturbations, eg a power plant going offline or a transmission line going down.

MIT OpenCourseWare http://ocw.mit.edu

22.081J / 2.650J / 10.291J / 1.818J / 2.65J / 10.391J / 11.371J / 22.811J / ESD.166J Introduction to Sustainable Energy Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.