

1.818J/2.65J/3.564J/10.391J/11.371J/22.811J/ESD166J SUSTAINABLE ENERGY

Prof. Michael W. Golay Nuclear Engineering Dept.

PRESENTATION OUTLINE

- I. Introduction
- II. Demand Variations for Electricity
- III. Electricity Supply Availability
- IV. Locational-Based Electricity Markets

ANNUAL AND SEASONAL DEMAND VARIATIONS

Annual

- Driven by economic growth
- Rough rule of thumb
 - Developed economies: electric growth rates approximately equal to economic growth rates
 - Developing economies: electric growth rates approximately twice that of economic growth rates
- Seasonal Changes Due to
 - Weather
 - Changes in usage (e.g., lighting, air conditioning)

WEEKLY AND DAILY DEMAND VARIATIONS

- Weekly Variations Driven by Business Day vs. Holiday/Weekend
- Daily Variations Driven by Time of Day, Weather, and to a Small Extent Spot Electricity Prices (so far)

HOURLY ELECTRICITY DEMAND IN NEW ENGLAND DURING TYPICAL SUMMER AND WINDER MONDAYS AND SUNDAYS

USEFUL FACTS REGARDING DEMAND VARIATIONS

- Demand is an Empirically Determined Probability Distribution Usually with a "Long Tail"
 - Lognormal type shape
 - Sometimes modeled as a Gamma Distribution

• Summer Peaks are More Pronounced Than Winter Peaks

SIMPLE DEMAND CALCULATION

- Problem
 - What is the amount of generation capacity needed to supply 20 GW of peak load?
 - If the system's load factor is .65, what is the average amount of demand?
- Assumptions
 - 3% transmission losses and 6% distribution losses
 - 20% capacity factor (amount of extra capacity needed beyond system peak to account for outages - to be discussed below)

SIMPLE DEMAND CALCULATION (Con't)

• Solution

- Generation Capacity = 1.20 *[20 GW + 20 GW* 0.09]
 = 26.2 GW
- Load Factor = Average Demand/Peak Demand
- Average Demand = 0.65*[20 GWh] = 13.0 GWh

SPATIAL DEMAND VARIATIONS

- Size of Typical Electricity Wholesale Markets
 - England and Wales
 - Northeast area of North America
 - Within in these large areas, there are multiple control areas (subregions that dispatch generation units within them) but with wholesale transactions among control areas
 - Control areas
 - Independent system operators (ISOs)
 - Regional transmission organizations (RTOs)
- Spatial Demand Variations Caused by
 - Differences in loads
 - Industrial vs. residential
 - Regional weather patterns
 - Time zones

SUPPLY OPTIONS

- Multiple Types of Generation Units to Address Demand Variations
 - Baseload (run of river hydro, nuclear, coal, natural gas CCGT)
 - Intermediate (oil, natural gas CCGT)
 - Peaking (oil, diesel, natural gas CT, pumped storage)
 - Non- dispatchable (wind, solar, wave)
- Tradeoffs
 - Capital and fixed costs vs. operating costs, which are primarily driven by fuel costs and heat rate
 - Lower operating costs vs. operational flexibility (e.g., start up time, ramp rate)
 - Who bears these costs influences investment decisions
 - Storage Options are Expensive (e.g., pumped storage, hydro reservoirs)

TRANSMISSION INFRASTRUCTURE

- AC Transmission Lines ($V \ge 115 \text{ kV} > 10,000 \text{ km}$)
- DC Transmission Lines
- Switch Gear, Transformers and Capacitor Banks
- Distribution Lines and Support Hardware

ECONOMIES OF SCALE VS. DEMAND UNCERTAINTY

- Average Costs per MWh Decrease with the Capacity of a Generation Unit (Economies of Scale)
- It is Less Expensive to "Overbuild" a System and Let Demand "Catch Up"
- But, Due to Uncertainty in Demand (Which is Influenced by Price Feedbacks), Future Demand May Not Materialize Quickly Enough to Justify the Additional up Front Capital Costs (Option Value)
- These Concepts Will be Discussed Later in the Course

GENERATION AVAILABILITY

- Availability The Probability That a Generation Unit Is Not on Forced Outage at Some Future Time (not the conventional definition of availability because it excludes planned maintenance)
 - Availability = MTTF/(MTTF + MTTR)
 - MTTF is the mean time to failure
 - MTTR is the mean time to repair
 - Expected failure rate = $1/MTTF = \lambda$
 - Expected repair rate = $1/MTTR = \mu$

Generation Availabilities Range from 0.75 to 0.95

AVAILABILITY

Conventional Definition:

The probability that a generation unit will be able to function as required at time, t, in the future.

CATEGORIES OF FAILURES

- Independent Failures The State of a Generator or Component Does Not Depend on the States of Other Generators or Components
- Dependent Failures
 - Component state-dependent
 - Common-cause failures the cause of one generator to fail also causes another unit to fail
 - extreme cold weather freezes coal piles
 - earthquakes trip multiple generation units
 - maintenance error results in multiple generation units tripping
 - Safety policies poor safety performance of one nuclear power unit leads to shutting down other nuclear units
 - Environmental policies

GENERATION UNIT AVAILABILITY DATA (2005-2009)

	MW Trb/Gen	# of	Unit-		MW Trb/Gen	# of	Unit-
Unit Type	Nameplate	Units	Years	Unit Type	Nameplate	Units	Years
FOSSIL	All Sizes	1,465	6774.33	NUCLEAR	All Sizes	113	513.25
All Fuel Types	1-99	353	1520.42	All Types	400-799	24	85.17
	100-199	388	1780.25		800-999	38	175.08
	200-299	172	823.33		1000 Plus	51	253.00
	300-399	126	599.75	PWR	All Sizes	66	320.58
	400-599	225	1062.00		400-799	9	40.50
	600-799	140	678.58		800-999	23	112.08
	800-999	49	245.00		1000 Plus	34	168.00
	1000 Plus	13	65.00	BWR	All Sizes	33	161 00
Coal	All Sizes	917	4310 58		400-799	5	23.00
Primary	1-99	165	730.75		800-999	11	53.00
	100-199	250	1172.25		1000 Plus	17	85.00
	200-299	119	577.42				
	300-399	75	353.33	CANDU	All Sizes	13	25.17
	400-599	151	704.17	JET	All Sizes	378	1753.25
1	600-799	113	547.67	ENGINE**	1-19	50	224.67
	800-999	33	165.00		20 Plus	328	1528.58
	1000 Plus	12	60.00	GAS	All Sizes	999	4608 58
Oil		128	191 12	TURBINE**	1-19	187	838.17
Primany	1-99	37	158 75		20-49	254	1201.92
Thinkary	100-199	34	120.58		50 Plus	558	2568.50
	200-299	10	35.00				
	300-399	14	64.83	COMB. CYCLE			
	400-599	15	51.67	REPORTED			
	600-799	9	38.42	UNITS ONLY	All Sizes	179	719.83
	800-999	8	17.17	HYDRO	All Sizes	1,220	5317.33
0		411	1224 25	ר	1-29	541	2319.25
Gas	All Sizes	411	1734.75		30 Plus	679	2998.08
riillary	100-100	114	491.83				
	200-299	ΔΛ	194.17	STOBAGE	All Sizes	115	543 67
	300-399	42	181 58			110	5-5.07
	400-599	62	280 08	MULTI-BOILER/			
	600-799	13	55.17	MULTI-TURBINE	All Sizes	41	137.67
	800-999	9	41.08	GEOTHERMAL	All Sizes	***	****
Danite Primary	All Sizes	23	95 25	DIESEI **	All Sizes	213	820.00
Lighter Filliary	All Sizes	23	90.20	DIEGEE	All 01265		020.00

Caution: EFOR and WEFOR values may be low since deratings during reserve shutdown periods may not have been reported for a large number of these units. * The two methods for calculating combined cycle units is not available at this time. **** Only two generating companies are reporting this type of unit. To retain confidentiality of the data, no data is reported here.

MODELING AVAILABLE GENERATION

LATIVE PROBABILITY DISTRIBUTIOR **OF AVAILABLE GENERATION AND IMPORT CAPACITY IN NEW ENGLAND** 1.000 Mean=24975.87 0.800+Prob. 0.600 0.400+ 0.200 0.000 └ 20 22 26 24 28 Values in Thousands 5% 5% 22.99 26.47 Capacity in MW

III. Matching Supply and Demand

RELIABILITY AND MATCHING SUPPLY AND DEMAND

- Reliability The Ability of an Electric Power System That Results in Electricity Being Delivered to Customers Within Accepted Standards and in the Amount Desired.
- The Reliability of the Electric Power System Requires Almost Instantaneous Matching of Supply and Demand
- If a Mismatch Occurs That Results in a Reliability Problem, a Large Number of Electric Customers, Not Just the Ones That Caused the Mismatch, Have Their Service Interrupted
 - e.g., Western U.S. Summer of 1996
- This Type of Economic Externality Does Not Exist in Other Markets (e.g., store running out of newspapers)

RELIABILITY AND AVAILABILITY TRENDS

- Reliability*: The Probability of Successful Mission Completion.
- Regional Scale Grid System Collapses are Becoming More Frequent (e.g., August 14, 2003, northeast U.S and lower Canada; midwest, 1998; west, 1996; Italy, 2003; London, 2003)
- Deregulation is Resulting in Much Larger Flow of Power Over Long Distances, as "Merchant" Power Plants Contract to Serve Distance (usually industrial loads)
- Grid Components and States are Operating Over Much Broader Ranges and for Longer Times Than Designed For
- Other Power Delivery Aspects (e.g., reactive power) are Excluded From Markets, and are Provided More Poorly

• Change σ Permits E to Stay Constant While Changing I

ELECTRIC SYSTEM TIMELINE

LOCATIONAL ELECTRICITY PRICING

- Dispatch Problem Formulation (constrained optimization):
 - Minimize cost of serving electric energy demand
 - Subject to
 - Demand = Supply
 - Transmission constraints
 - thermal limits: prevent damage to transmission components
 - * stability: keeping generation units in synchronism
 - * voltage: maintain voltage within acceptable limits
 - frequency: maintain frequency within acceptable limits
 - * contingency: ability to withstand the failure of components

LOCATIONAL ELECTRICITY PRICING (Con't)

• Dispatch Problem Solution:

- Solution method is usually a linear program
- For each time period (e.g., five minutes), a vector of generation output for each generator
- For each time period, a vector of prices at each node that reflects the marginal cost of serving one more MWh at that node for that time period
- Nodal Price (t) = Marginal Fuel Cost
 - + Variable Maintenance Cost
 - + Transmission Constraints
 - + Transmission Losses

IMPLICATIONS OF NODAL PRICING

Prices Could be Negative

 e.g., a nuclear unit that does not want to turn off during light load conditions because it would not be able to come back on line during higher load periods

Prices May Increase Dramatically if a Constraint is Binding

- Cheap generation in the unconstrained area must be back down and replaced with higher cost generation
- Extremely Volatile Prices Across Space and Time

DISCUSSION OF CALIFORNIA

- Electricity Restructuring Was Initiated at a Time of Excess Generation Capacity and Motivated to Lower Rates for Retail Customers and Encouraged by British Deregulatory Success
 - Need date for new generation capacity was believed to be distant and beyond the time needed to site and build new generation units
 - Market forces were assumed to be able to address supply/demand mismatches in the interim
 - Desire to complete the bargain between utilities to recover costs of past investments and politicians to lower electricity prices reinforced the above beliefs
- Dramatic Load Growth, Attenuated Market Signals Due to Political Choices, and Time Lags in Siting In-State Generation Has Lead to Supply Shortages

Forced Removal of Generating Assets Has Been Important, too

MIT OpenCourseWare http://ocw.mit.edu

22.081J / 2.650J / 10.291J / 1.818J / 2.65J / 10.391J / 11.371J / 22.811J / ESD.166J Introduction to Sustainable Energy Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.