Energy Transmission and Storage

Sustainable Energy 9/23/2010

text readings in Chapter 16 Sections 16.1-16.3, 16.6-16.7

Sustainable Energy - Fall 2010 - Storage

Sustainable Energy – Chapter 16 Storage, Transportation, and Distribution of Energy

16.1 Overview of Energy Supply Infrastructure Needs	. 648
16.2 Connected Efficiencies and Energy Chains	651
16.3 Modes of Energy Storage	653
16.3.1 General characteristics	653
16.3.2 Energy storage technologies	658
	670
16.4.1 General characteristics of energy transmission systems	670
16.4.2 Oil transport	. 671
16.4.3 Natural gas transport	674
16.4.4 Coal transport	675
16.4.5 Electric power transmission	676
16.5 Energy Distribution Systems	678
16.5.1 General characteristics of central versus distributed systems	678
16.5.2 Combined heat and power opportunities	681
16.5.3 Applications to renewable energy systems and hybrids	683
16.6 Sustainability Attributes	683
16.6.1 Improved resource utilization	683
16.6.2 Environmental, safety, and health concerns	683
16.6.3 Economic and operational attributes	684
16.7 Opportunities for Advancement of Sustainable Energy Infrastructures	684
References	686
Web Sites of Interest	688
Problems	688

Energy Storage – outline of topics

- Why do we need storage?
- Demand and scale requirements
- Technology options
- Performance factors and metrics
- Economic considerations and status
- Storage for Hybrid Electric Vehicles
- Environmental and sustainability issues

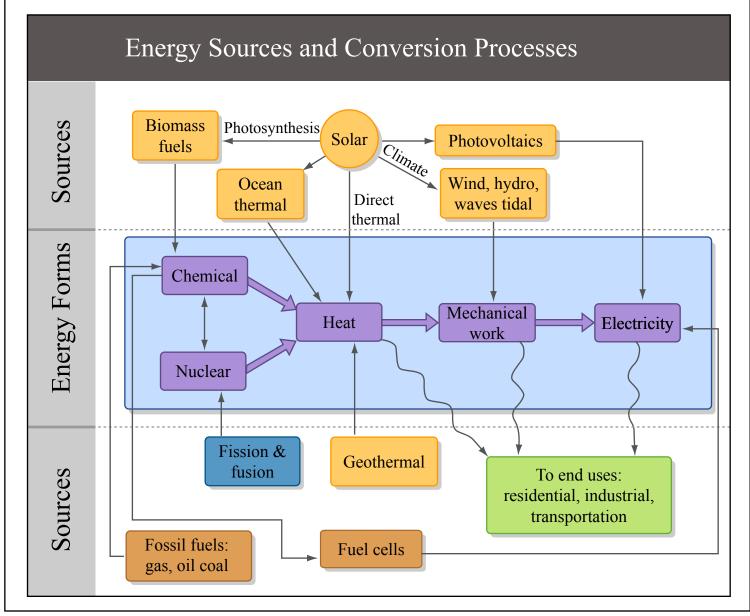
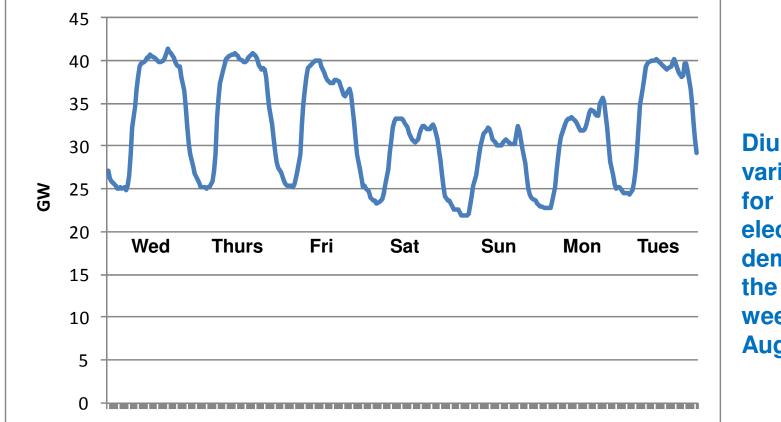
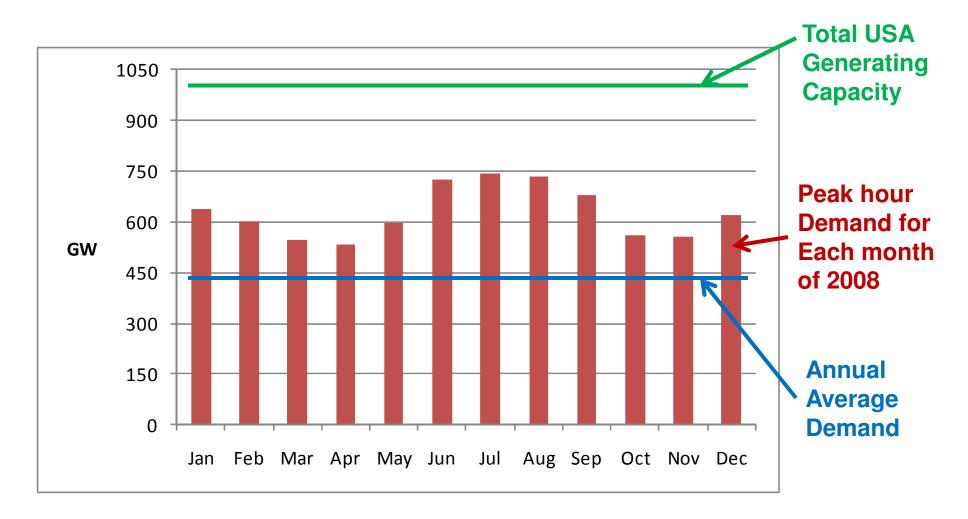



Image by MIT OpenCourseWare.

Motivation for storage

- Variations in Energy Demand
- Variations in Energy Supply
- Interruptions in Energy Supply
- Transmission Congestion
- Demand for Portable Energy
- Efficiency of Energy Systems
- Energy Recovery

Variations in Energy Demand


Diurnal variations for UK electricity demand in the last week of August 2010

Source: NationalGrid

Options to Manage Supply & Demand

- Excess capacity plus dispatch system
- Demand management
- Energy storage

Variations in Energy Demand

Source: EIA 2008

Sustainable Energy - Fall 2010 - Storage

Variations in Energy Supply

Example: Nevada Solar One hourly net electricity output

Image removed due to copyright restrictions. Please see slide 36 in Cohen, Gilbert. "Solargenix Energy: The Natural Power for Good." Las Vegas, NV: IEEE, May 16, 2006. Interruptions in Energy Supply

- Cost to USA from poor power quality \$119 to \$188 billion/year (EPRI)
- Global market for Uninterruptable Power Supply, UPS systems, is \$7 billion/year

Baxter, Richard. Energy Storage: A Nontechnical Guide. Tulsa, OK: PennWell, 2006. ISBN: 9781593700270.

Motivation for storage

- Variations in Energy Demand
- Variations in Energy Supply
- Interruptions in Energy Supply
- Transmission Congestion
- Demand for Portable Energy
- Efficiency of Energy Systems
- Energy Recovery

Reality Today

- Not much energy storage in US electricity supply system
 - Pumped storage is only 2% of entire generating capacity
- USA system uses excess capacity and dispatch to meet demand
 - Installed capacity is more than twice the average demand
- Lack of storage impedes large-scale deployment of intermittent sources
 - Requires redundancy by conventional power plants

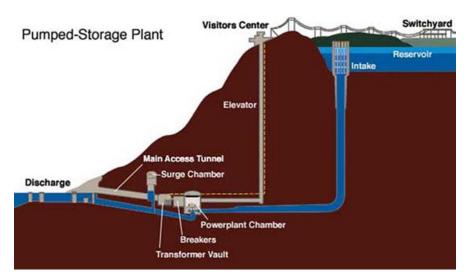
Storage demand requirements – a multiscale challenge

- Electric power
 - for grid 10 to 1000 MW hrs on diurnal and seasonal cycles
 - for non-grid distributed power 10 W to 100 MW
 - battery back up for PV solar and wind, hybrid vehicles
 - farm pumping and other remote applications
 - low-head hydro storage
- UPS systems kW to MW for seconds to hours
- Thermal energy applications kW to MW
 - heating and cooling in buildings
 - passive solar residential
 - active systems hot water and ice storage
 - industrial process heating 100 kWh to 100 MWh

Storage technology options and modes

- Potential energy (pumped hydro, compressed air, springs)
- Kinetic energy (mechanical flywheels)
- Thermal energy without phase change
 - passive (adobe) and active (water)
- Thermal energy with phase change (ice, molten salts, steam)
- Chemical energy (hydrogen, methane, gasoline, coal, oil)
- Electrochemical energy (batteries, flow cells)
- Electrostatic energy (capacitors)
- Electromagnetic energy (superconducting magnets)

Pumped Hydro is the conventional large-scale storage option. More than 20 GW capacity in USA today.


Pumped Storage

Advantages:

- Low Cost
- Scale

Disadvantages:

- Siting
- Large footprint

Images from TVA and Adrian Pingstone on Wikimedia Commons.

S. van der Linden / Energy 31 (2006) 3446-3457

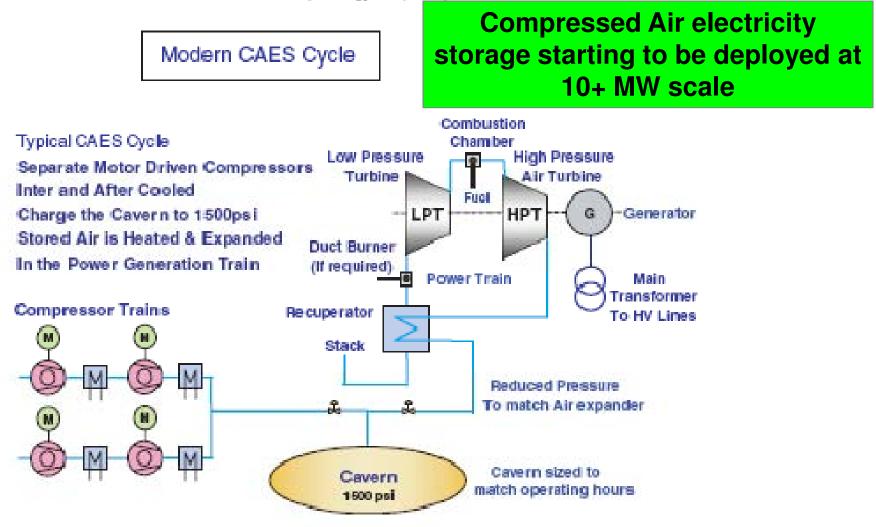


Fig. 1. CAES basic cycle. Source: Alstom Power.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Sustainable Energy - Fall 2010 - Storage

Electric energy storage at kW scale: Lead-Acid Batteries

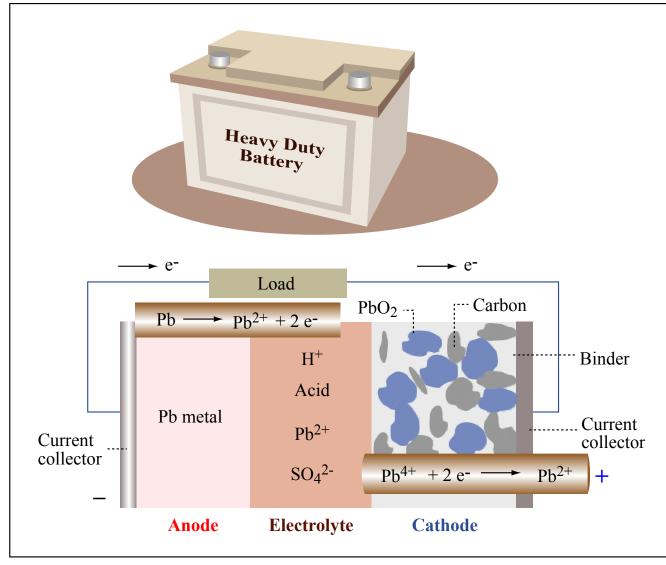


Image by MIT OpenCourseWare. Adapted from Donald Sadoway.

Sustainable Energy - Fall 2010 - Storage

Flywheel Technology: High Power Density but Low Specific Energy

Image of POWERTHRU Flywheel removed due to copyright restrictions.

Pentadyne GTX Flywheel

Supercapacitor: High Power Density but Low Specific Energy

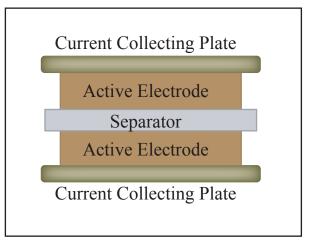


Image by MIT OpenCourseWare.

Opportunities:

- Increased effective area
- Enhanced dielectric materials

Superconducting Magnetic Energy Storage (SMES): High Power Density but very expensive

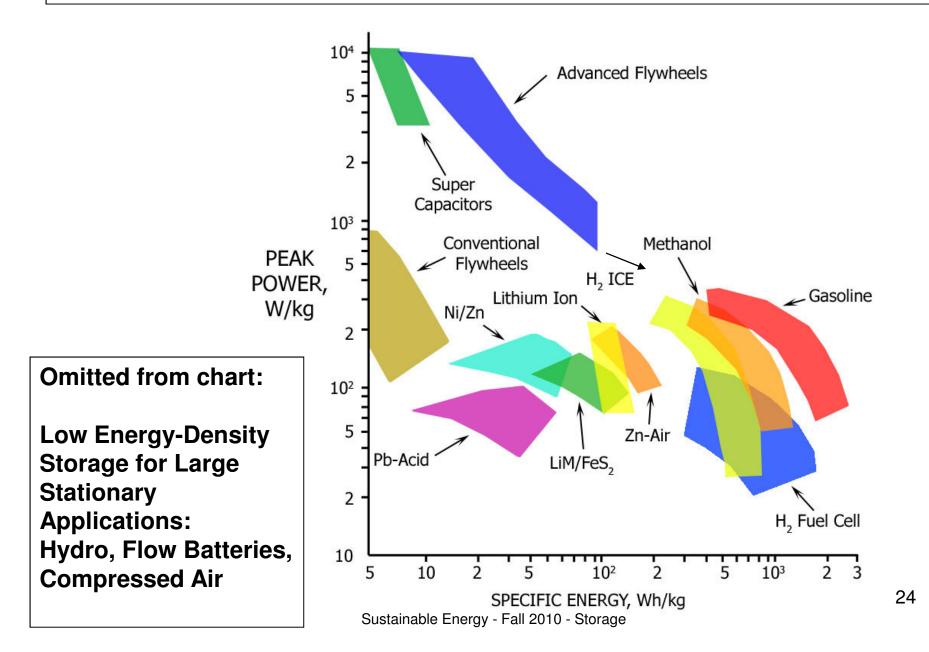
Diagram of American Superconductor's D-SMES system removed due to copyright restrictions.

Advantages:

- Very high efficiency 95%
 Disadvantages:
- Very high Costs

American Superconductor

Performance factors for energy storage systems


- energy capture rate and efficiency
- discharge rate and efficiency
- dispatchability and load following characteristics
- scale flexibility
- durability cycle lifetime
- mass and volume requirements footprint of both weight and volume
- safety risks of fire, explosion, toxicity
- ease of materials recycling and recovery

Performance factors for energy storage systems

- energy capture rate and efficiency
- discharge rate and efficiency
- dispatchability and load following characteristics
- scale flexibility
- durability cycle lifetime
- mass and volume requirements footprint of both weight and volume

Comparing Storage Technologies – Ragone Plot

Energy storage in general

Mode	Primary Energy Type	Energy Energy Density	
Pumped Hydropower	Potential	Potential 1 (100m head)	
Compressed Air Energy Storage	Potential	15,000 in kJ/m ³	Electric
Flywheels	Kinetic	30-360	Transport
Thermal	Enthalpy (sensible + latent)	Water (100-40°C) – 250 Rock (250-50°C) – 180 Salt (latent) – 300	Buildings
Fossil Fuels	Reaction Enthalpy	Oil – 42,000 Coal – 32,000	Transport, Electric, Industrial, Buildings
Biomass	Reaction Enthalpy	Drywood – 15,000	Transport, Electric, Industrial, Building
Batteries	Electrochemical	Lead acid – 60-180 Nickel Metal hydride – 370 Li-ion – 400-600 Li-pdgmer ~ 1,400	Transport, Buildings
Superconducting Magnetic Energy Storage (SMES)	Electromagnetic	100 – 10,000	Electric
Supercapacitors	Electrostatic	18 – 36	Transport

Energy Storage Technology Characteristics

	Pumped Hydro	CAES ^(a)	Flywheels	Thermal	Batteries	Supercapacitors	SMES ^(b)
Energy Range	1.8 X 10 ⁶ – 36 X 10 ⁶ MJ	180,000– 18 X 10 ⁶ MJ	1–18,000 MJ	1–100 MJ	1800– 180,000 MJ	1–10 MJ	1800– 5.4 X 10 ⁶ MJ
Power Range	100–1000 MWe	100–100 MWe	1–10 MWe	0.1 to 10 MWe	0.1 to 10 MWe	0.1-10 MWe	10–1000 MWe
Overall Cycle Efficiency	64–80%	60–70%	~90%	~80–90%	~75%	~90%	~95%
Charge/Discharge Time	Hours	Hours	Minutes	Hours	Hours	Seconds	Minutes to Hours
Cycle Life	?10,000	?10,000	?10,000	>10,000	?2,000	>100,000	?10,000
Footprint/Unit Size	Large if above ground	Moderate if under ground	Small	Moderate	Small	Small	Large
Siting Ease	Difficult	Difficult to moderate	N/A	Easy	N/A	N/A	Unknown
Maturity	Mature	Early stage of development	Under development	Mature	Lead acid mature, others under development	Available	Early R&D stage, under development

Energy storage costs and status

- Capital versus operating costs
- Current commercial systems
 - pumped hydro (widely deployed: more than 20 GWe USA capacity)
 - thermal energy storage (water, ice, passive systems common)
 - chemical energy storage (natural gas, petroleum, solid fuels)
 - batteries 1 W to 100 kW scale now common for lead acid
- future systems near term
 - flywheels
 - supercapacitors
 - compressed air
 - Improved batteries Li-ion polymer
- future systems long term
 - hydrogen storage for vehicles and distributed power
 - SMES
 - Advanced batteries and fuel cells

Cost projections for energy storage systems

System	Typical Size Range MWe	\$/kWe	\$/kWh
Pumped hydropower	100-1000	600-1000	10-15
Batteries Lead acid Nickel metal hydride Li-ion	0.5–100 0.5-50 0.5-50	100-200 200-400 200-400	150-300 300 500
Mechanical flywheels	1-10	200-500	100-800
Compressed air energy storage (CAES)	r 50-1,000 500-1,000		10-15
Superconducting magnetic energy storage (SMES)	10-1,000	300-1,000	300-3,000
Supercapacitors	1-10	300	3,600

28

Storage Challenges for Hybrid Electric Vehicles (HEV)

Photo by IFCAR on Wikimedia Commons.

Sustainable Energy - Fall 2010 -Storage

Energy Storage for an HEV

- Batteries
 - Lead-acid
 - Lithium-ion
 - Nickel-metal hydride
- Ultracapacitors
- Flywheels

Energy Storage in HEV's: Technical Challenges

- Low Specific Energy: Batteries are Heavy!
- Cycling Lifetime
 - Many batteries lose capacity on each charge/discharge
 - Can ameliorate by not charging/discharging all the way
- Power Density
 - Existing batteries limit ability to absorb energy from regenerative braking
 - Opportunities for super capacitors or flywheels
- Charging battery-only vehicles rapidly

Environmental issues for energy storage

- Land use
 - inundation caused by hydro projects
 - thermal (hot/cold) island local effects
 - underground storage systems have special geotechnical requirements to insure safe operation
- Materials toxicity disposal and recycle e.g. batteries
- Durability and lifetime of entire system
- Emissions during manufacture and operation

Relevance of energy storage to sustainability

- Essential for effective use of intermittent renewable energy resources including solar, wind, biomass, and hydro
- Storage can provide quality energy when it is needed
- Critical for high efficiency hybrid ICE/electric and fuel cell vehicles
- Full life cycle environmental impacts must be considered in tradeoffs -- especially for pumped hydro and batteries
- Continuing advances in technology and deployment will lower costs to enable broader participation for electric and thermal storage at scales from 10 W to 100 kW for seconds to 100 hours
- Major innovations are needed for new systems to have an impact at largest scale (> 100 MW, >5 GWh)

Energy Transmission – outline of topics

- Options and costs
- Infrastructure and scale
- Issues

Graph removed due to copyright restrictions. Please see Fig. 16.7 in Tester, Jefferson W., et al. *Sustainable Energy: Choosing Among Options*. MIT Press, 2005. ISBN: 9780262201537.

There are many options for energy transport:

- •For electricity -- we have
 - wires (AC and DC)
- For fossil fuels gas/oil/coal we have --
 - pipelines
 - trains
 - trucks
 - ships
- For hot or cold water, steam we have --
 - pipelines

Costs scale with directly with distance; \$0.20-\$0.60/bbl/1000 mi for oil; 10x more for electricity & coal. Transport very significant cost for coal & gas far from markets. LNG affordable to ship by sea, but very expensive to liquefy in first place.

USA Energy Transport Infrastructure is large and deeply entrenched

400,000+ miles of gas and oil pipelines 160,000+ miles of high voltage transmission lines

Image by jrawle on Flickr.

Image by SystemF92 on Flickr.

Energy transmission – scale and performance

Scale of energy transmission is Enormous!
 250,000 mi of gas pipelines of various sizes in the US supply about 30 EJ per year
 supertankers carry 200,000 to 300,000 ton (1.4 to 2.1 million bbl of oil) payloads long distances very efficiently -- 2000+ miles
 Oil pipelines can extend for long distances (1000 or more

miles) and have high capacity

e.g. max flow of 2.1 million bbl per day of crude over 900 miles in 1988 from Prudhoe Bay to Valdez, Alaska

□ 160,000+ miles of electric transmission lines in the US >250 kW □ a unit train carries 100,000+ tons of coal.

□ Many options, but costs, energy consumption increase with distance

Environmental Impacts

-Oil Spills

□ Security, Political, and Right-of-Way issues

Additional transmission issues

Security/Politics

- Russian gas pipelines to Europe
- How to get Caspian oil to market?
- Many places in world rely on a single pipeline.
- NIMBY concerns about shipping nuclear materials.
- Pipelines, LNG, Electric Grid, Rail require huge upfront capital investments
 - Investors taking a lot of risk, want guarantees
 - Supply resource must last many years
- Often hard, expensive to secure right-of-way
 - To add new power lines or rail into cities
 - May not be worth it for small projects.
 - Complex regulations and permitting for electric utilities, pipeline operations, rail.

Assessing Storage/Transmission Issues for New Energy Options: Stranded Gas

– Efficiency:

 $\eta_{gas-to-LNG}(1-k_{ship}d_{ship})(1-k_{pipe}d_{pipe})\eta_{gas-to-electricity}(1-k_{wire}d_{wire}) - Economics: net present value!$

Cost: NPV of LNG plant, terminals, ships, pipeline, power plant, transmission lines, plus cost of the gas, plus operating/maintenance

Revenue: NPV of the electricity

Size of resource is crucial: need many years of revenue to pay back the capital costs

Assessing Storage/Transmission Issues for New Energy Options: Biomass

• Efficiency:

 $(1-k_{truck}d_{truck})\eta_{biomass-to-fuel}(1-k_{pipe}d_{pipe})$

Can dramatically improve efficiency by locating conversion plant next to waste heat source, but large losses in trucking biomass to this location.

- Economics:
 - Cost: NPV of conversion plant, trucks, pipeline, labor to collect biomass.

NOTE: will conversion plant be used year-round? If so, how to store the biomass from the harvest? If not, low utilization rate of conversion plant.

Revenue: NPV of delivered fuel stream

Energy storage and transmission – summary

- □ Range of energy storage
 - from watts to megawatts
 - e.g. from small batteries to pumped hydropower
- □ Modes of energy storage
 - potential energy (pumped hydro , CAES)
 - kinetic (mechanical flywheels)
 - thermal (sensible and latent heat)
 - chemical (heats of reaction and combustion for biomass, fossil, hydrogen, etc.)
 - electrical (electrochemical, electrostatic, electromagnetic batteries, supercapacitors, and SMES)
- Importance of both power and energy density (weight and/or volume) e.g. Ragone plot of specific power versus specific energy
- Transmission many options but costs increase with distance while performance decreases
- Environmental Impacts and sustainability issues

MIT OpenCourseWare http://ocw.mit.edu

22.081J / 2.650J / 10.291J / 1.818J / 2.65J / 10.391J / 11.371J / 22.811J / ESD.166J Introduction to Sustainable Energy Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.