

1.818J/2.65J/3.564J/10.391J/11.371J/22.811J/ESD166J SUSTAINABLE ENERGY

Prof. Michael W. Golay Nuclear Engineering Dept.

RESOURCE EVALUATION AND DEPLETION ANALYSES

WAYS OF ESTIMATING ENERGY RESOURCES

- Monte Carlo
- "Hubbert" Method Extrapolation
- Expert Opinion (Delphi)

FACTORS AFFECTING RESOURCE RECOVERY

- Nature of Deposit
- Fuel Price
- Technological Innovation
 - Deep drilling
 - Sideways drilling
 - Oil and gas field pressurization
 - Hydrofracturing
 - Large scale mechanization

URANIUM AREAS OF THE U.S.

Courtesy of U.S. Atomic Energy Commission.

MAJOR SOURCES OF URANIUM

Class 1 – Sandstone De	eposits			
	I a a	U ³ O ⁸ Concentration		
	Share	(Percent)	Tons U ³ O ⁸	
New Mexico	.49	0.25	Total	
Wyoming	.36	0.20	315,000	
Utah	.03	0.32	Š \$10/lb	
Colorado	.03	0.28		
Texas	.06	0.28		
Other	.03	0.28		
Class 2 – Vein Deposits			7,100	
Class 3 – Lignite Deposits		0.01-0.05	1,200	
Class 4 – Phosphate Rock		0.015		
Class 5 – Phosphate Rock Leached Zone (Fla.)		0.010	54,600	
Class 6 – Chattanooga Shale		0.006	2,557,300	
Class 7 – Copper Leach Solution Operations		0.0012	30,000	
Class 8 – Conway Granite		0.0012-Uranium 0.0050-Thorium	1x106 4x106	
Class 9 – Sea Water		0.33x10-6	4x109	

Image by MIT OpenCourseWare.

RECOVERY BY IN-SITU COMBUSTION

Source: U.S. Department of Energy, "Fossil Energy Research and Development Program of the U.S. Department of Energy, FY 1979," DOE/ET-0013(78), March 1978.

MONTE CARLO ESTIMATION OF THE
PROBABILITY DENSITY FUNCTION OF A
FUNCTION OF A SET OF RANDOM VARIABLES, AS

$$G = G(\overline{Z})$$
, where (Eq. 1)
 $\overline{Z} = [y_1, y_2, ..., y_n]$ and
 Y_i is a random variable (i = 1,n)

Note that \overline{Z} and G are also random variables.

MONTE CARLO ESTIMATION, Continued

- 1. Utilize a random number generator to select a value of $F(y_i)$ within range $[0, 1] \Rightarrow$ corresponding value of y_i (Eq. 3).
- 2. Repeat step 1 for all values of i and utilize selected values of $\overline{Z}_1 = \begin{bmatrix} y_{1_1}, y_{2_1}, \dots, y_{n_1} \end{bmatrix}$ to calculate a value of \overline{Z}_1 (Eq. 1) (note \overline{Z} is also a random variable).
- 3. For the k-th set of selected values of $\overline{Z}_{K} = \begin{bmatrix} y_{1_{K}}, y_{2_{K}}, \dots, y_{n_{K}} \end{bmatrix}$ can obtain the corresponding value of $G_{K} = G(K/\overline{Z}_{K})$
- 4. Repeat step 2 many times and obtain a set of values of vector \overline{Z} , and corresponding value of G_k .
- 5. Their abundance distributions will approximate those of the pdfs of the variab $\overline{\mathbb{R}}$ s and $\overline{\mathbb{G}}[Z]$ as

M. KING HUBBERT'S MINERAL RESOURCE ESTIMATION METHOD

ASSUMED CHARACTERISTICS OF MINERAL RESOURCE EXTRACTION

- As More Resource Is Extracted The Grade Of The Marginally Most Attractive Resources Decreases, Causing
 - Need for improved extraction technologies
 - Search for alternative deposits, minerals
 - Price increases (actually, rarely observed)

M. KING HUBBERT'S MINERAL RESOURCE ESTIMATION METHOD, Continued

POSTULATED PHASES OF MINERAL RESOURCE EXTRACTION

- Early: Low Demand, Low Production Costs, Low Innovation
- Growing: Increasing Demand And Discovering Rate, Production Growing With Demand, Start of Innovation
- Mature: Decreasing Demand And Discovery Rate, Production Struggling To Meet Demand, Shift To Alternatives
- Late: Low Demand, Production Difficulties, Strong Shift To Alternatives (rarely observed)

U.S. NATURAL GAS PRODUCTION

Comparison of estimated (Hubbert) production curve and actual production (solid line).

COMPLETE CYCLE OF WORLD CRUDE-OIL PRODUCTION

RESOURCE BEHAVIOR UNDER "HUBBERT" ASSUMPTIONS

SUBJECTIVE PROBABILITY STUDY – STATE OF NEW MEXICO

Courtesy of U.S. Atomic Energy Commission.

Courtesy of U.S. Atomic Energy Commission.

MIT OpenCourseWare http://ocw.mit.edu

22.081J / 2.650J / 10.291J / 1.818J / 2.65J / 10.391J / 11.371J / 22.811J / ESD.166J Introduction to Sustainable Energy Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.