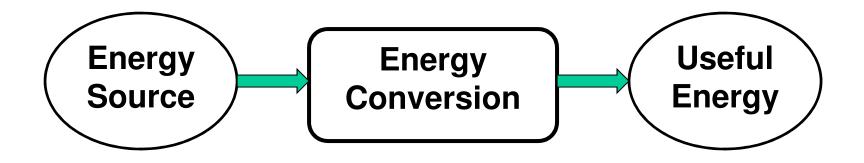
Energy Transfer and Conversion Methods

MIT 10.391J/22.811J/ESD.166J/11.371J/1.818J/3.564J/2.65J

9/16/2010


Sustainable Energy - Fall 2010 - Conversion

Mission of this Session

- Introduce the importance and challenges of Energy Conversion
 - Diffuse energy sources
 - Thermodynamic limits
 - Rate processes

Energy Conversion

• Energy Conversion is the process of changing energy from one form to another

Historic Energy Conversion Sequences

- Biomass \rightarrow heat (esp. cooking)
- Solar \rightarrow heat, dry clothes, dry food
 - Solar is still main light source, no need for conversion
 - Solar is source of biomass, wind, hydro, etc.
- Biomass \rightarrow farm animals \rightarrow horsepower, food

Later, people also did these conversions:

- Coal \rightarrow heat
- Hydro \rightarrow milling flour, running machinery
- Wind \rightarrow pump water

Modern Energy Conversion Sequences

Heating of Buildings:

- Gas, oil, biomass \rightarrow heat
- Solar \rightarrow heat

Electricity Generation:

- Coal, gas, nuclear \rightarrow heat \rightarrow mechanical \rightarrow electricity
- Hydro \rightarrow mechanical \rightarrow electricity
- Wind \rightarrow mechanical \rightarrow electricity
- Solar \rightarrow Electricity

Transportation:

- Oil \rightarrow gasoline, diesel, jet fuel \rightarrow heat \rightarrow mechanical
- Biomass \rightarrow ethanol \rightarrow heat \rightarrow mechanical
- Fuel cell cars: Gas \rightarrow hydrogen \rightarrow electricity \rightarrow mechanical
- Hybrid cars: Gasoline \rightarrow mechanical \rightarrow electricity \rightarrow battery \rightarrow electricity \rightarrow mechanical

Energy Sources

Type of Energy	Examples
Potential Energy	Hydro
Kinetic Energy	Wind, Tidal
Thermal Energy	Geothermal, Ocean Thermal
Radiant Energy	Solar
Chemical Energy	Oil, Coal, Gas, Biomass
Nuclear Energy	Uranium, Thorium

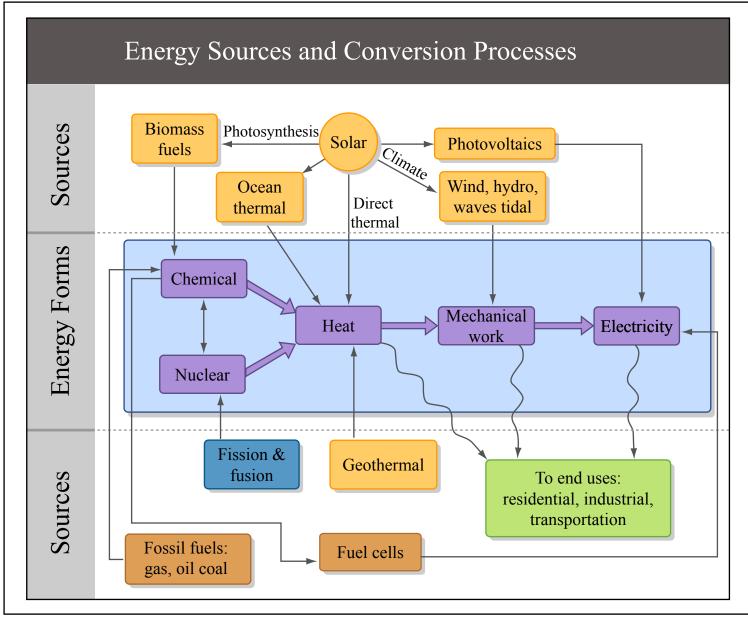
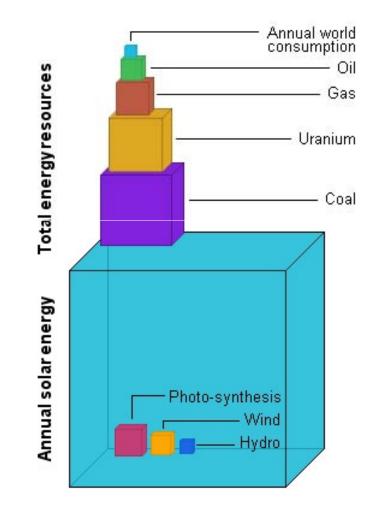


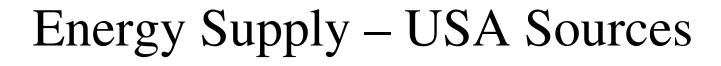
Image by MIT OpenCourseWare.

Scales of energy flows

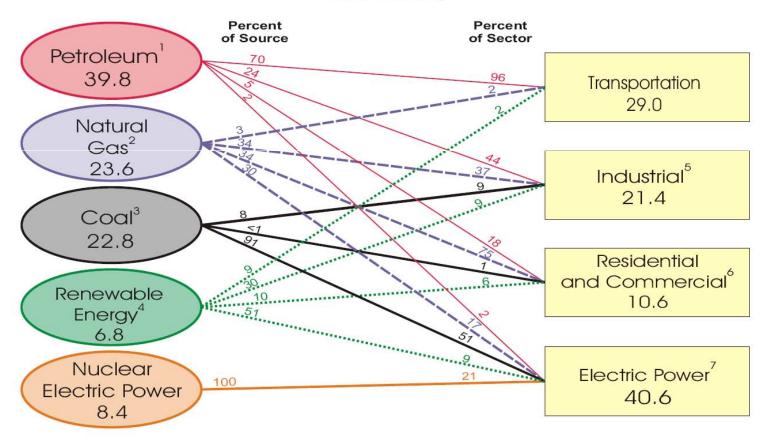
• cell phone	2 W
 laptop computer 	10 W
• human body (2000 Calorie di	et) 100 W
• 1 horsepower	750 W
• hair dryer	1,500 W
• automobile	130,000 W
• 1 wind turbine	2,000,000 W (2 MW)
• 757 jet plane	5,000,000 W (5 MW)
• Large power plant	1,000,000,000 W (1 GW)
• Global energy use 1	5,000,000,000,000 W (15 TW)
• Global heat accumulation 81	6,000,000,000,000 W (816 TW)
• Global renewable energy flow	w 9E16 W (90,000 $_{s}^{TW}$)


Energy versus Power

Energy E (in BTU, joules(J) or cal) Power P = dE/dt (BTU/hr, Watts(W)) 1 Watt = 1 Joule/Second


Heat Flows versus Work

Energy per time can be used to describe heat flow and work but to distinguish between these energy flows we use notation: thermal – t or th and electric – e MW_{th} and MW_{e}


Order of Magnitude of Energy Resources

Sustainable Energy - Fall 2010 - Conversion

U.S. Primary Energy Consumption by Source and Sector, 2007 (Quadrillion Btu)

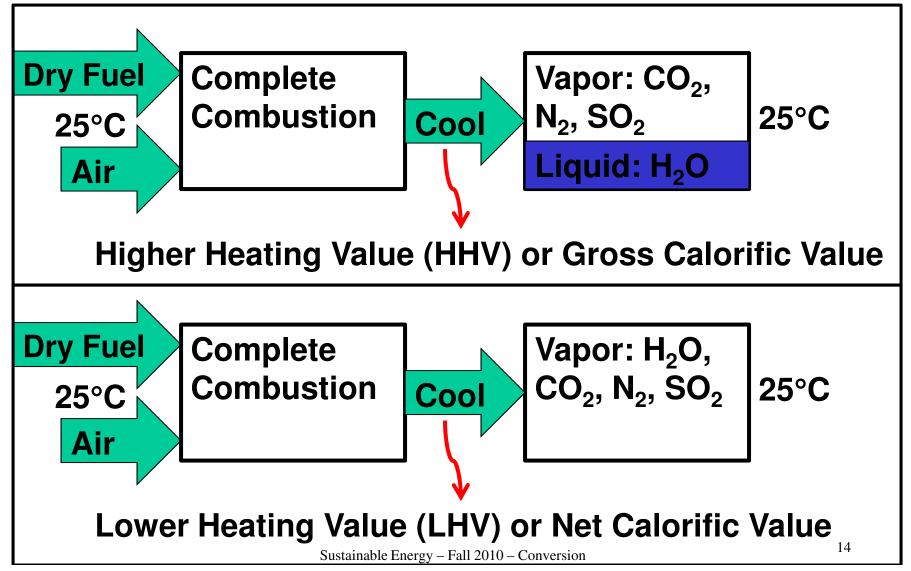
Important Metrics

Energy Sources

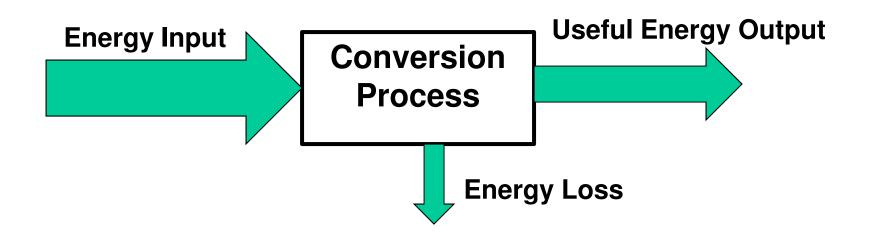
- Specific Energy (MJ/kg)
 Conversion Efficiency
- Energy Density (MJ/L)
- Phase \bullet
- Impurities
- Cost \bullet

Conversion Method

- Form of energy product
- CO₂ generation
- Water usage
- Land usage
- Cost


Typical Specific Energy Values

Fuel	Higher Heating Value (MJ/kg)
Hydrogen	141.8
Methane	55.5
Gasoline	47.3
Diesel	44.8
Bituminous coal	31.0
Lignite	25.1
Douglas Fir Wood	20.4
Corn Stover	17.8
Bagasse	17.3
Wheat Straw	17.0
Animal Waste	13.4
Sewage Sludge	4.7


Channiwala, et al. 2002 and NIST Chemistry WebBook

Energy Content of Fuels

Energy content of fuel is characterized by the heat produced by burning

Key Metric: Conversion Efficiency

- When producing work (mechanical or electricity): $\eta = Work Output / Energy Input$
- When producing energy carriers (diesel, hydrogen): $\eta = Energy$ Content of Product / Energy Input

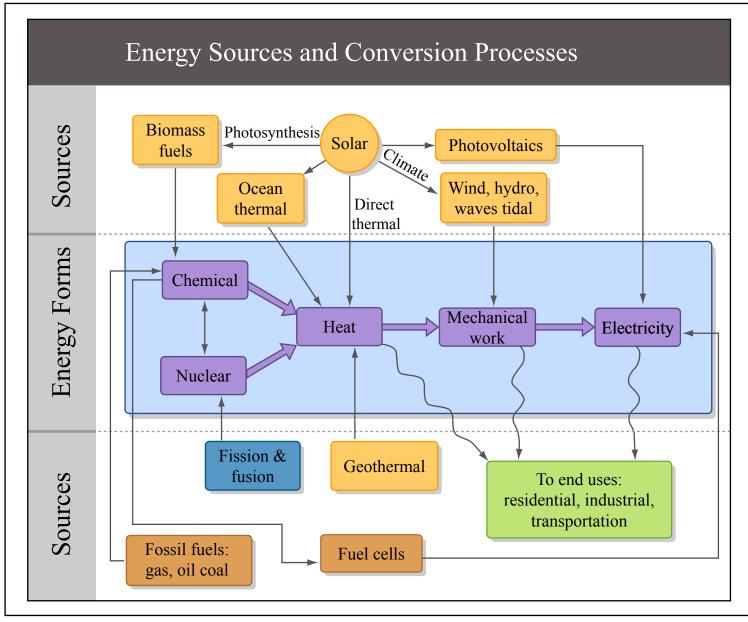


Image by MIT OpenCourseWare.

Conversion Efficiencies

Conversion	Туре	Efficiencies
Natural Gas Furnace	Chemical \rightarrow Heat	90-96%
Internal combustion engine	Chemical \rightarrow Mechanical	15-25%
Power Plant Boilers	Chemical \rightarrow Heat	90-98%
Steam Turbines	Heat \rightarrow Mechanical	40-45%
Electricity Generator	Mechanical \rightarrow Electricity	98-99%
Gas Turbines	$Chemical \rightarrow Mechanical$	35-40%
Hydro	Grav. Potential \rightarrow Mechanical	60-90%
Geothermal	Thermal \rightarrow Mech \rightarrow Electricity	6-13%
Wind	Kinetic \rightarrow Mech \rightarrow Electricity	30-60%
Photovoltaic Cells	Radiation \rightarrow Electricity	10-15%
Ocean Thermal	Thermal \rightarrow Mech \rightarrow Electricity	1-3%

Source: Sustainable Energy

Overall Efficiency includes Steps Upstream & Downstream of the Energy Conversion System

A linked or connected set of energy efficiencies from extraction to use:

Overall efficiency =
$$\eta_{overall} = \prod_{i=1}^{n} \eta_i$$

$$\eta_{overall} = \eta_{gas\,extraction} \eta_{gas\,proces\,sin\,g} \eta_{gas\,transmission} \eta_{power\,plant} \eta_{electricity\,transmission} \eta_{distribution} \eta_{motor}$$

Key Efficiencies include:

- Fuel production
- Fuel Transport
- Transmission
- Energy Storage

for example compressed air energy storage (CAES):

 $\eta_{overall} \equiv \frac{Work\,output}{Work\,input} = \frac{W_{turbine}}{W_{compressor}} = \eta_{turbine}\eta_{compressor}$

Sustainable Energy - Fall 2010 - Conversion

Energy Conversion

Laws of Thermodynamics provide limits Heat and work are not the same They are both energy, but... • ... cannot convert all heat to work Each conversion step reduces efficiency Maximum work output only occurs in idealized reversible processes □ All real processes are *irreversible* Losses always occur to degrade the efficiency of energy conversion and reduce work/power producing potential

In other words - You can't win or even break even in the real world

Rate Processes in Energy Conversion

- Heat Transfer
- Mass Transfer
- Chemical Reactions

Fluxes of heat, material, electrons must be driven by gradients in free energy

- Fourier's law of heat conduction $q = -k \frac{dT}{dx}$
- Fick's law of diffusion $j = -D \frac{dC}{dx}$
- Fluid mechanics $Flow in pipe = -\frac{2\rho D^2}{\mu f \operatorname{Re} dx} \frac{dP}{dx}$
- Ohm's law of current flow

Consequence: the heat arrives at lower T, the mass arrives at lower P, the electrons arrive at lower V, etc.: "Losses"

 $\frac{I}{A} = -\sigma \frac{dV}{dx}$

Heat Transfer

- For heat to be transferred at an appreciable rate, a temperature difference (Δ T) is required.
 - $Q = U A \Delta T$
- The non-zero Δ T guarantees irreversibility
- As Δ T does to zero, area and cost goes to infinity

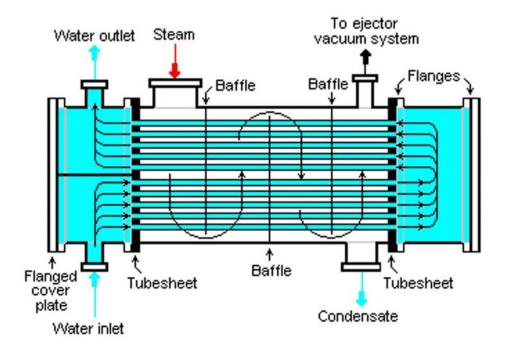


Image by Mbeychok on Wikimedia Commons.

Heat exchangers

- Many varieties of heat exchangers used in energy conversion
 - Heat recovery steam generators (HRSG)
 - Air-cooled condensers
 - Shell-and-tube exchangers
 - Plate-fin exchangers
 - Cooling Tower

Humanity's Main Energy Source: Chemical reactions

- Virtually all fossil fuels and biofuels are converted to useful energy via chemical reactions at a rate of ~13 TW
- Energy released by conversion reactions can be converted to mechanical energy or electricity
- Some reactions are used to convert a primary energy sources to more useful forms of chemically stored energy
 - Solid fossil fuels \rightarrow Liquid fuels
 - Natural Gas \rightarrow Hydrogen
 - Biomass \rightarrow Liquid fuels

Chemical Reactions

Chemical reactions either require or release heat.

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ $\Delta H_{rxn} = -890 \text{ kJ/mol}$

Exothermic reaction: one that gives off energy. $\Delta H_{rxn} < 0$. **Endothermic** reaction: one that requires energy. $\Delta H_{rxn} > 0$.

Except in unusual situations (e.g. fuel cells, chemiluminescence) essentially all of the ΔH_{rxn} is released or supplied as heat.

Examples of Energy Conversion Reactions

Fuel combustion

- $CH_4 + 2O_2 = CO_2 + 2H_2O -$ natural gas
- $C_8H_{12} + 11 O_2 = 8 CO_2 + 6 H_2O gasoline$
- $C_6H_{12}O_6 + 6\overline{O}_2 = 6\overline{CO}_2 + 6\overline{H}_2O \text{cellulosic biomass}$

Hydrogen production

- $CH_4 + H_2O = CO + 3H_2 steam$ reforming of methane
- $CO + H_2O = CO_2 + H_2$ water gas shift reaction

Hydrogen fuel cell

• $H_2 + \frac{1}{2}O_2 = H_2O + \text{electricity} + \text{heat}$

N.B. These overall reactions occur through multiple steps

Gasification to Syngas

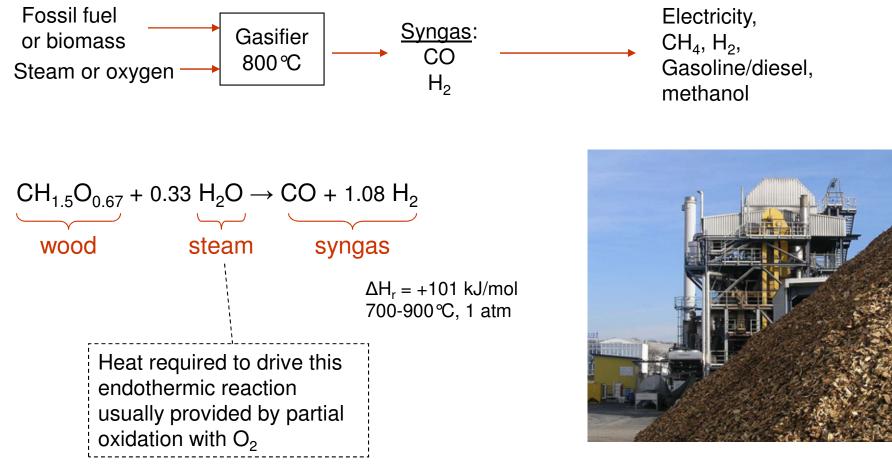
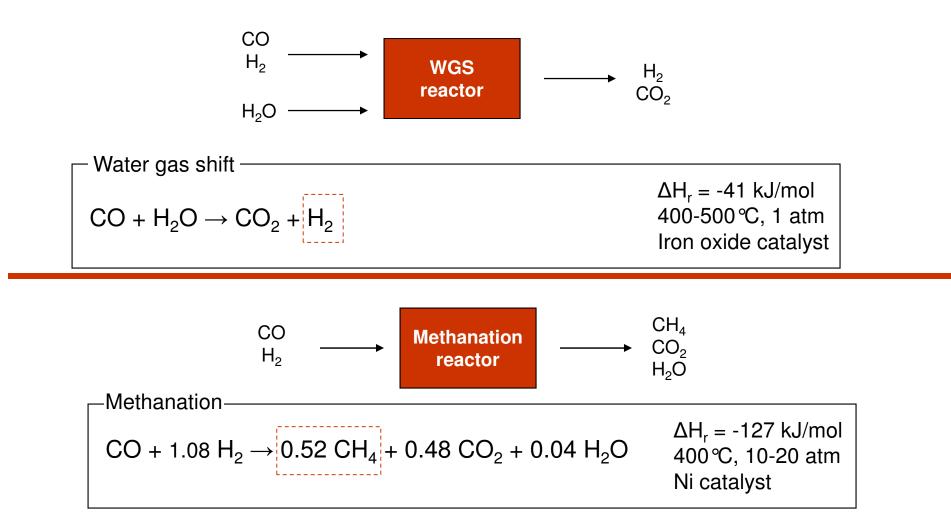
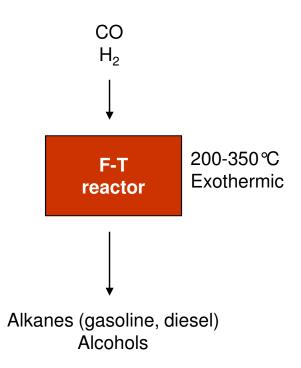



Image by Gerfriedc on Wikimedia Commons.

Source: National Renewable Energy Lab; F. Vogel, Paul Scherrer Institut, Switzerland.

Water-gas-shift and methanation reactions


Source: F. Vogel, Paul Scherrer Institut, Switzerland; & Cat Comm 4 215-221 (2003).

Fischer-Tropsch Reaction: Syngas to Liquid Fuels

• "Ideal" FT reaction:

(2n+1) H_2 + n CO \rightarrow C_n H_{2n+2} + n H_2 O

- Many simultaneous reactions
 - alcohols, alkenes, etc.
- Applications:
 - Coal-to-liquids
 - Gas-to-liquids
 - Biomass-to-liquids

Rates of chemical reactions

• Chemical reaction rates are functions of the concentration of reacting species.

$$\mathsf{A} + \mathsf{B} \leftrightarrow \mathsf{C} + \mathsf{D}$$

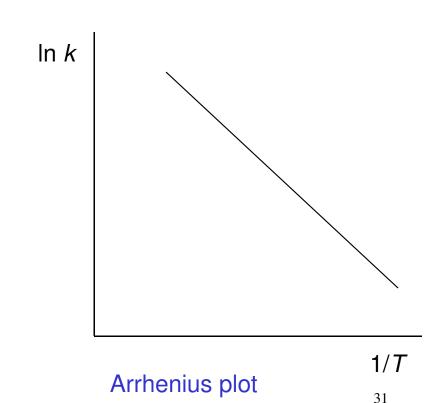
Forward rate $r_f = k_f [\mathbf{A}]^{n_A} [\mathbf{B}]^{n_B}$

Backward rate

 $r_b = k_b [\mathbf{C}]^{n_c} [\mathbf{D}]^{n_b}$

 Forward and Backward Reactions running simultaneously: need a free-energy difference to drive in one direction.

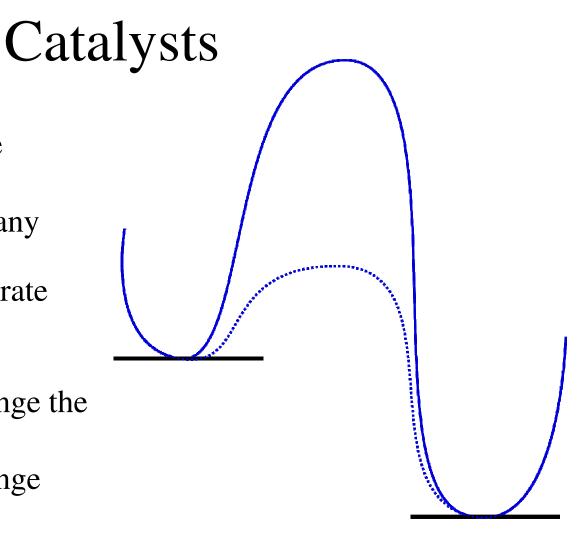
<u>Overall rate</u>


$$r = k_f [A]^{n_A} [B]^{n_B} - k_b [C]^{n_C} [D]^{n_D}$$

Rate definition
$$r \equiv -\frac{d[A]}{dt} = -\frac{d[B]}{dt} = \frac{d[C]}{dt} = \frac{d[D]}{dt}$$

Sustainable Energy - Fall 2010 - Conversion

Reaction rates are strong functions of temperature


- Chemical reactions generally accelerate dramatically with temperature
- Typical values of E_A are ~200 kJ/mol.

 $r \propto k = A \exp\left\{\frac{-E_A}{RT}\right\}$

• Catalysts accelerate chemical reactions.

- In mixtures with many reactions possible, catalysts can accelerate desired reactions to increase selectivity.
- Catalysts don't change the equilibrium.
- Catalysts don't change $\Delta H_{\rm rxn}$.

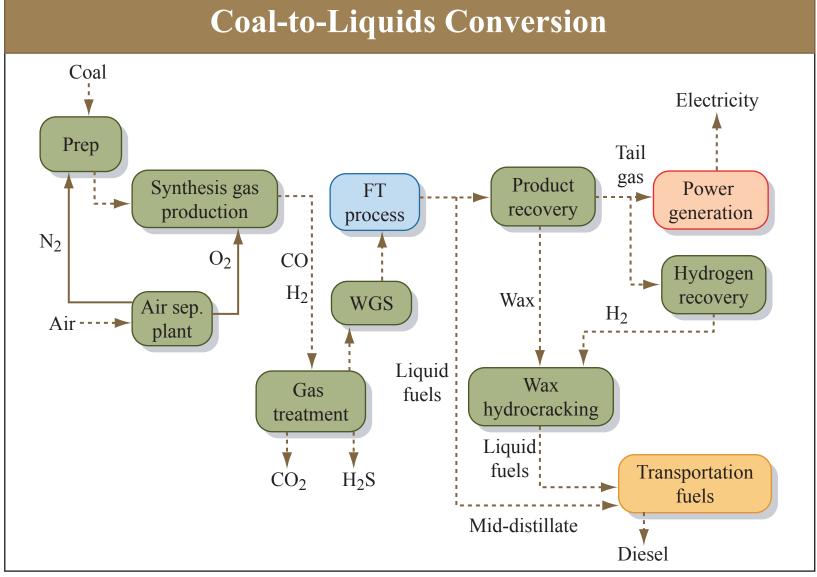


Image by MIT OpenCourseWare. Source: PNNL.

Sustainable Energy – Fall 2010 – Conversion

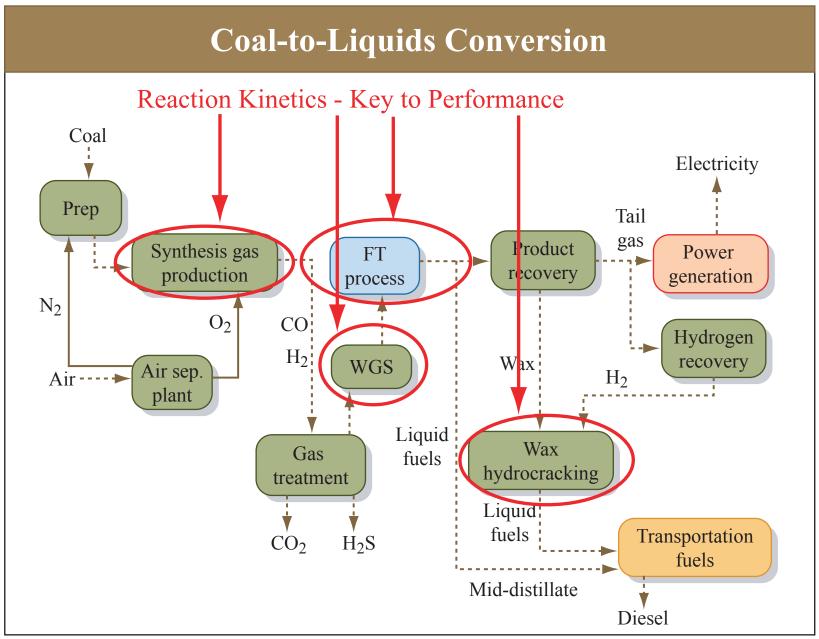


Image by MIT OpenCourseWare. Source: PNNL.

Coal-to-Liquids Conversion

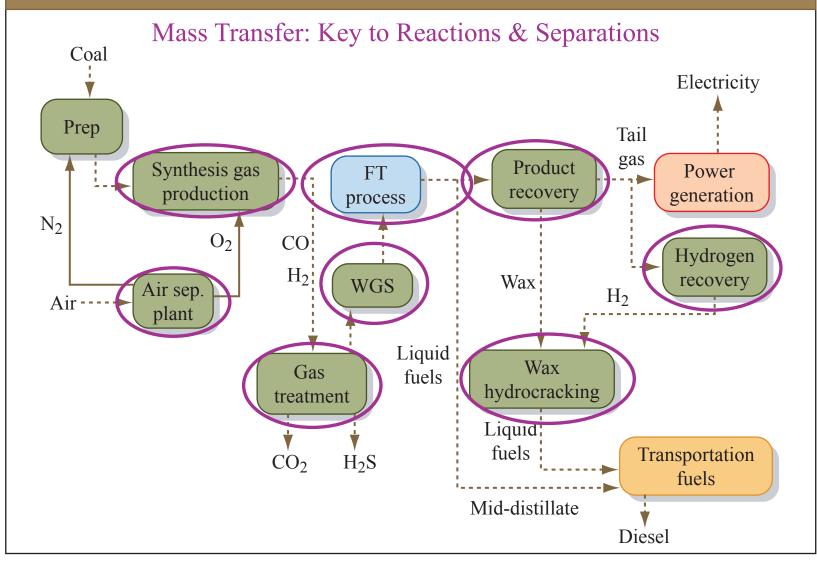


Image by MIT OpenCourseWare. Source: PNNL.

Coal-to-Liquids Conversion

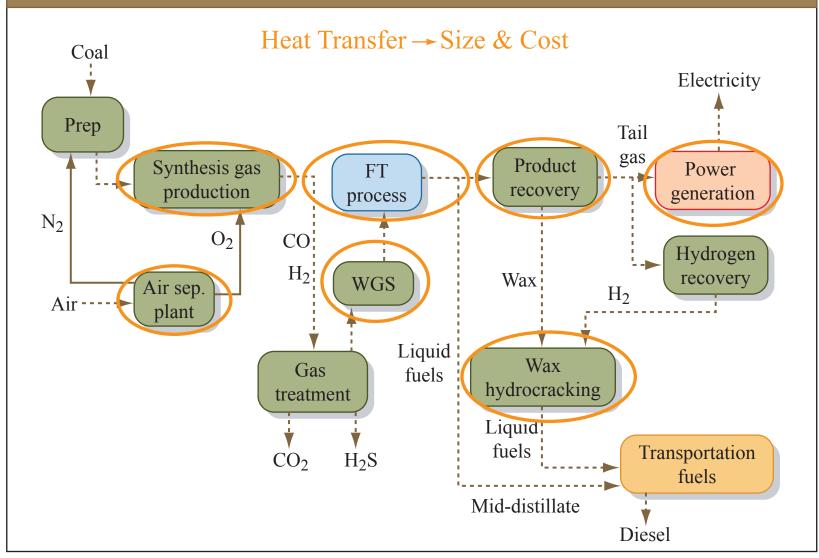


Image by MIT OpenCourseWare. Source: PNNL.

Coal-to-Liquids Conversion

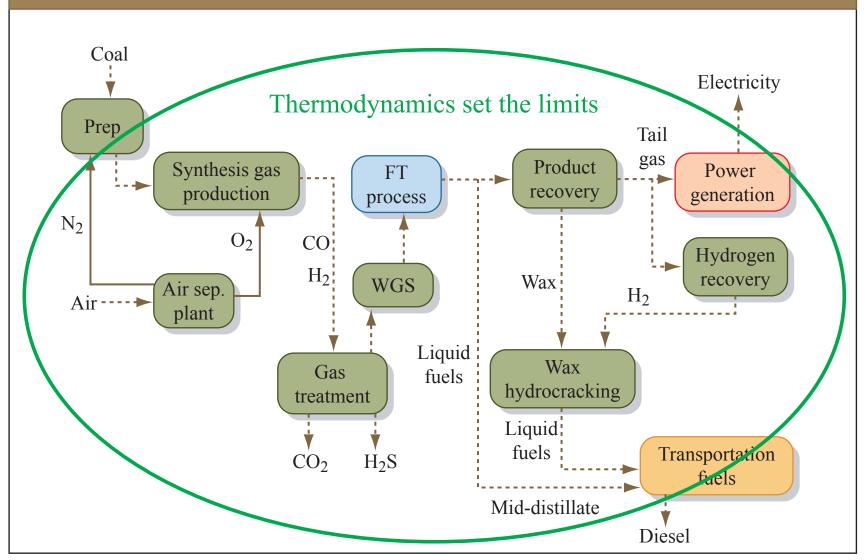


Image by MIT OpenCourseWare. Source: PNNL.

Sustainable Energy - Fall 2010 - Conversion

Common Conversion Efficiency Challenges, Part 1

- Thermo Limit on Conversion of heat to work:
 - Work < Heat (1- T_{low}/T_{high})
 - Material (boiler, turbine) & emission (NO_X) limits T_{high}
 - Cooling tower (rate of evaporation, LHV) limit on T_{low}
- Difficult to precisely control chemical reactions
 - Common energy conversion strategy: just mix a fuel with air, and let the reaction run to completion.
 - Then extract work from the hot exhaust gases.
 - Usually the conversion of chemical energy to heat is irreversible: large increase in entropy.

Common Conversion Efficiency Challenges, Part 2

- Energy Resources Far From Users
 - Real security, global economy issues
 - Takes energy and money to move the resource or electricity to the users
- Convenience, Reliability, Emissions Matter
 - Solid Fuels Difficult to handle (so we don't use coal for ships any more)
 - Coal only 1/10 the price of oil
- Energy Density and Specific Energy Matters
 - Lots of land needed to collect diffuse resources like solar, wind, biomass, hydro
 - Transport costs and transport energy significant for low-energy-density fuels (e.g. natural gas, hydrogen)
- Power Density Matters
 - Energy conversion equipment is expensive, want to do a lot of conversion with small equipment: Large Fluxes required, so Large Free Energy Gradients
 - For transportation, need to carry the energy conversion equipment with you!

Remember, each conversion reduces efficiency and costs money.

MIT OpenCourseWare http://ocw.mit.edu

22.081J / 2.650J / 10.291J / 1.818J / 2.65J / 10.391J / 11.371J / 22.811J / ESD.166J Introduction to Sustainable Energy Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.