CONSERVATION EQUATIONS

Lumped-parameter formulation

$\frac{\partial M_{c v}}{\partial t}=\sum_{i} \dot{m}_{i}$
$\frac{\partial(M \vec{V})_{c v}}{\partial t}=\sum_{i}(\dot{m} \vec{V})_{i}+\sum_{j} \vec{F}_{j}$
$\frac{\partial E_{c v}}{\partial t}=\dot{Q}-\dot{W}+\sum_{i}\left[\dot{m}\left(h+\frac{V^{2}}{2}+g z\right)\right]_{i}$
$\frac{\partial S_{c v}}{\partial t}=\sum_{j}\left(\frac{\dot{Q}}{T}\right)_{j}+\sum_{i}(\dot{m} s)_{i}+\dot{S}_{g e n}$
(momentum)
(energy)
(entropy)

1D formulation
$\frac{\partial \rho}{\partial t}=-\frac{\partial G}{\partial z}$
$\frac{\partial G}{\partial t}=-\frac{\partial}{\partial z}\left[\frac{G^{2}}{\rho}\right]-\frac{\partial P}{\partial z}-\frac{\tau_{w} p_{w}}{A}-\rho g \cos \theta$
$\rho \frac{\partial h}{\partial t}=-G \frac{\partial h}{\partial z}+\frac{q^{\prime \prime} p_{h}}{A}+\left[\frac{\partial P}{\partial t}+\frac{G}{\rho}\left(\frac{\partial P}{\partial z}+\frac{\tau_{w} p_{w}}{A}\right)\right]$
(momentum)
(energy)

Differential (3D) formulation

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \vec{V})=0 \tag{mass}\\
& \rho\left[\frac{\partial \vec{V}}{\partial t}+\vec{V} \cdot \nabla \vec{V}\right]=-\nabla P+\mu \nabla^{2} \vec{V}+\rho \vec{g}
\end{align*}
$$

(momentum, for incompressible fluid)

$$
\rho c_{p}\left[\frac{\partial T}{\partial t}+\vec{V} \cdot \nabla T\right]=-\nabla \cdot \vec{q} "+q^{\prime \prime \prime}+\beta T \frac{D P}{D t}+\phi
$$

(energy)
Symbols:

A	Flow Area	cv	Control Volume
c	Specific Heat	gen	Generation
E	Internal Energy	h	heated
F	Force	P	Pressure
g	Gravitational Acceleration	r	Radial
G	Mass Flux	w	Wall or Wetted
h	Enthalpy		
\dot{m}	Mass Flow Rate		
M	Mass	β	Therm. Expansion Coeff.
p	Perimeter	ϕ	Dissipation function
P	Pressure	μ	Viscosity
\dot{Q}	Rate of Heat Transfer	ρ	Density
S, s	Entropy	τ	Shear Stress
t	Time		
T	Temperature		
V	Velocity		
\dot{W}	Rate of Energy Transfer as Work		
z	Elevation		

REACTOR THERMAL PERFORMANCE PARAMETERS

Parameter	Name	Typical values		Units
		PWR	BWR	
$\dot{\mathrm{q}}$	Power of fuel rod	67	77	$\mathrm{~kW}(\mathrm{BTU} / \mathrm{hr})$
q^{\prime}	Linear heat generation rate	18	20	$\mathrm{~kW} / \mathrm{m}(\mathrm{BTU} / \mathrm{hr}-\mathrm{ft})$
$\mathrm{q}^{\prime \prime}$	(or linear power)	Heat flux	600	530
$\mathrm{q}^{\prime \prime \prime}$	Volumetric heat generation rate	350	240	$\mathrm{MW} / \mathrm{m}^{2}\left(\mathrm{BTU} / \mathrm{mr}^{3}\left(\mathrm{BTU}-\mathrm{ft}^{2}\right)\right.$
$\dot{\mathrm{Q}}$	Core power	$*$	$*$	hW

* It varies much from plant to plant

For a fuel rod operating at steady-state conditions, the parameters are related as follows:
$\dot{q}=q^{\prime} L=q^{\prime \prime} 2 \pi R_{c o} L=q^{\prime \prime \prime} \pi R_{f}^{2} L=\dot{Q} / N$

Where R_{f} is the fuel pellet radius, $R_{c o}$ is the fuel rod outer radius, L is the fuel rod active (heated) length and N is the total number of fuel rods in the core.

MIT OpenCourseWare
http://ocw.mit.edu

22.06 Engineering of Nuclear Systems

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

