1. Give the functional form and sketch both the real and imaginary components of the Fourier transformation (with respect to x) of the following functions. Identify the spatial frequencies, wave-numbers, and features in the spectra. k_{o} is a constant real number
a. $\cos \left(k_{o} x\right)+i \sin \left(k_{o} x\right)$
b. TopHat $\left(\frac{x}{4}\right)$
c. $\sin \left(8 k_{o} x\right) \cos \left(k_{o} x\right)$
d. $\sum_{n=-2}^{2} \delta(x-n)=\sum_{n=-\infty}^{\infty} \delta(x-n) \cdot \operatorname{TopHat}\left(\frac{x}{2}\right)$
e. TopHat $(x-4)$
2. Show that the $k=0$ point of $F(k)$ is equal to the area $f(x)$, where $f(x) \Leftrightarrow F(k)$.
(10 points)
3. Show that the $k_{x}=0$ point of $F\left(k_{x}, k_{y}\right)$ is equal to the projection of $f(x, y)$ onto the \mathbf{y}-axis where $f(x, y) \Leftrightarrow F\left(k_{x}, k_{y}\right)$.
(5 points)
4. A simple way of characterizing the spatial distribution of a radiation source is to image it with a pin-hole imager.
(40 points)
a. Draw the experimental geometry, and explain why this is a useful experiment. What is the form of the image, $I(x, y)$, in terms of the source distribution, $S(x, y)$, assuming a perfect pin-hole camera? Place the a distance, a, from the source and the screen (detectors) and a distance, b, from the pin-hole. Include the magnification in your answer.
b. Assume the pin-hole is of a finite size (radius = r), and therefore a true representation of the source is not observed. In linear imaging terms, explicitly describe the detected signal, $I(x, y)$ in both the source distribution and the pin-hole size.
(10 points)
c. There is an oblique effect if the source extends far from the central line through the pin-hole. Without calculating the geometry of this effect, describe how it arises.
5. The Nyquist condition states that to correctly measure a frequency the signal must be sampled at least twice a period.
(20 points)
a. Let f be the Nyquist frequency, show that the signals, $\cos [2 \pi(f+\Delta f) t]$ and $\cos [2 \pi(f-\Delta f) t]$, lead to the exact same data points when sampled at times $t(n)=n / 2 f$.
(10 points)
b. Explain aliasing in terms of the above result.
(10 points)
