Problem Set 8

Ses \#23

Question 1

A point source of strength S_{p} is located at the center of a sphere of a non-multiplying medium with properties D and Σ_{a}, and an extrapolated radius $R_{\text {exp }}$, in an infinite vacuum.

Find the flux distribution in the sphere

Question 2

Consider a finite cylindrical reactor with the following properties

$$
\begin{gathered}
v \Sigma_{f}=0.08 \mathrm{~cm}^{-1} \\
\Sigma_{a}=0.062 \mathrm{~cm}^{-1} \\
D=0.90 \\
\text { True core height (H) }=4 \mathrm{~m} \\
\text { True core radius (R) }=3 \mathrm{~m} \\
\text { (Don't forget to account for the extrapolated radius) }
\end{gathered}
$$

Calculate the eigenvalue of this reactor

Question 3

Solve the point kinetics equations with a single precursor group for an initially critical reactor for a step insertion of positive reactivity of $0.9 \$$. (i.e. provide analytical solution). Assume that the initial reactor power is P_{0} and that the precursors are at equilibrium. Sketch both the reactor power and precursor concentration as a function of time. Show the details of your calculations. Assume the following parameters:

$$
\begin{aligned}
& \beta=0.006 \\
& \lambda=0.1 \mathrm{~s}^{-1} \\
& \Lambda=0.00001 \mathrm{~s}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

22.05 Neutron Science and Reactor Physics

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

