

Biofuels Subgroup Progress Report

Alex, Lizzy, Ogie, Matt, and Kathryn November 14, 2011

- Overall Design of Biofuels Plant
- Switchgrass
- Gasification & Tar Removal
- Acid Gas Removal
- Fischer-Tropsch Reactor
- Distillation
- Refining
- Final Products and Carbon Sequestration
- Concluding Thoughts

Preparation

- Outsource switchgrass ("SG") production and preparation to local farmers (possibly in Texas or Minnesota)
- Densification
 - SG is originally 100 kg/m³, 51.77% of which is lignin and cellulose
 - Densify at 137 MPa, 90°C with a screen size of 3.2 mm
 - New density is around 1000 kg/m³, which is appropriate for injection into SILVA gasification.

Densification Graph

© The Canadian Society for Bioengineering. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Switchgrass III

Preparation

- Moisture content: 20%
- Field drying
- We will use all components of SG in pellets.
- 3500 tons/day

Silvagas Dual Fluidized Bed Cycle

© ASME. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Silvagas Dual Fluidized Bed Cycle

© ASME. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Silvagas Dual Fluidized Bed Cycle

© ASME. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Inputs and Outputs

- Biomass Input: 41 kg/s dry, 20% moisture = 51.25 kg/s total
- Steam Input: 182°C, 4.42 kg/s
- Air Input: 354°C, 4 kg/s
- Total Mass Input: 55.67 kg/s
- Total Syngas Output: 33.2 kg/s, 800°C
- Total Flue Gas Output: 26.47 kg/s

Elemental Mass Balance

Major Element	Input (kmol/s)	Output in Syngas (kmol/s)	Output in Flue Gas (kmol/s)
Total Carbon	1.686	1.231	0.255
Total Hydrogen	4.114	1.442	2.672
Total Oxygen	1.942	1.060	0.882

Estimated flow rates calculated using http://chippewa.gtsav.gatech.edu/outreach/workshop/presentations/gfarris.pdf &Twin-Bed Gasification Concepts for Bio-SNG Production (Paisely)

Composition of Syngas Output

Compound	% by Volume	Mass Flow (kg/s)
СО	47	18.459
H2	18	0.252
CO2	14.3	8.824
CH4	14.9	3.352
C2H4	4.7	1.849
C2H6	1 1	0 464
Total	100	33.200

Estimated flow rates calculated using http://chippewa.gtsav.gatech.edu/outreach/workshop/presentations/gfarris.pdf &Twin-Bed Gasification Concepts for Bio-SNG Production (Paisely)

Acid Gas Removal I

Overlap with Silvagas Process

© ASME. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Acid Gas Removal II

Overall Process

© Nexant, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

- 1. Particulate Removal (682°C, 1bar)
- 2. Cooling Syngas (682°C to 107°C)
- 3. Water Scrubber (107°C, 1bar)
- 4. Compressor (1bar to 30.7bar)
- 5. Acid Gas Removal (Diethanolamine HN(CH_CH_OH)_)
- 6. LO-CAT (CO2, H2S Removal) ¹⁸

Acid Gas Removal III

Amine Plant

Courtesy of Plant Process Equipment, Inc. Used with permission.

Acid Gas Removal IV

LO-CAT process

Courtesy of Merichem Company. Used with permission.

- Removes all remaining CO₂
- Converts H₂S to an innocuous, elemental sulfur
- Uses a dual chelated iron catalyst environmentally safe.

Composition of Input to F-T Reactor

Compound	Mass Flow (kg/s)
СО	18.4
H2	0.34
CO2	0.00
CH4	3.71
C2H4	2.12
C2H6	0.31
Total	25.0

Slurry Phase Bubble Column Design

- Churn turbulent 2 phase flow
- Fe catalyst

Catalyst activity: Ru > Fe > Ni > Co > Rh

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Reactions, Heat transfer

CO+2H2 --> -(CH2)- + H2O+170kJ H2O+CO --> CO2+H2 (water shift reaction)

Heat generated in FT reactor: Q = 0.25kg/s*1mol/0.002kg*170kJ/mol = 21.8 MW

Intake water flow rate (using EPA limit of 11°C) m = Q/(C*(Ta-Ti)) = 470 kg/s

Product Selectivity

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Fischer Tropsch Reactor IV

Reactor Outputs

Carbon Content	Product Classification	Mass Flow (kg/s)
C1 - C5	Light Gas	3.19
C5 - C12	Naphtha (Gasoline)	9.70
C12 - C20	Distillate (Biodiesel)	7.08
C20+	Heavy wax	4.70

Composition of Distillation Output

Compound Class	LFTF Syncrude
Linear Paraffins	> 60%
Naphthenes	< 1%
Olefins	> 20%
Aromatics	none
Oxygenates	5-15%
Sulfur Compounds	none
Nitrogen Compounds	none
Metal Containing Compounds	carboxylates
Water	major by-product

Sasol Technology R&D, FTR and C1 Chemistry Research, HCC 19 August 2010

Purposes

- 1. Hydrogenation of olefins
- 2. Removal of oxygen-containing compounds
- 3. Desulfurization to < 20microgram/gram
- 4. Hydroisomerization
 - Increases branched isomers
 - Better octane rating

5. Hydrocracking of n-paraffins to isoparaffins

Hydrogen Inputs

[©] ACS. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Product Classification	Mass Flow (ton/day)	
Light Gas	276	
Diesel	612	
Gasoline	838	
Total Gasoline + Diesel	1450	

 Assuming 10 gal/tank, this amount of gasoline and diesel can fill about 53,000 cars/day

Carbon Sequestration

GE CO2 management system

Pump spotlight: **Re-injection pilot**

© General Electric Company. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

- CO2 sources: acid gas removal, distillation
- Options: Sell, inject to underground storage, send to deep ocean dissolution
- CO2 liquidifies at density 300kg/m^3
- Compress to 200 bar with inline integrally geared compressor and DDHF multistage barrel pump

- Research Continues
- Possible Electric Inputs
- Possible Heat Inputs and Outputs
- Hydrogen Inputs
- EES, Aspen modeling
- Questions

MIT OpenCourseWare http://ocw.mit.edu

22.033 / 22.33 Nuclear Systems Design Project Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.