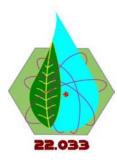


22.033 Biofuels Presentation

Alex, Lizzy, Ogie, Matt, and Kathryn October 3, 2011



- Our Goal
- House of Quality
- Comparison of Biomass Sources
- Possible Uses & Processes
- Comparison of Inputs
- Comparison of Outputs
- Conclusion

As a group, we intend to design a biofuels plant which:

- 1. Maximizes our fuel output
- 2. Couples with hydrogen production
- 3. Uses the the resources (electricity, heat, etc.) from the nuclear plant.

House of Quality

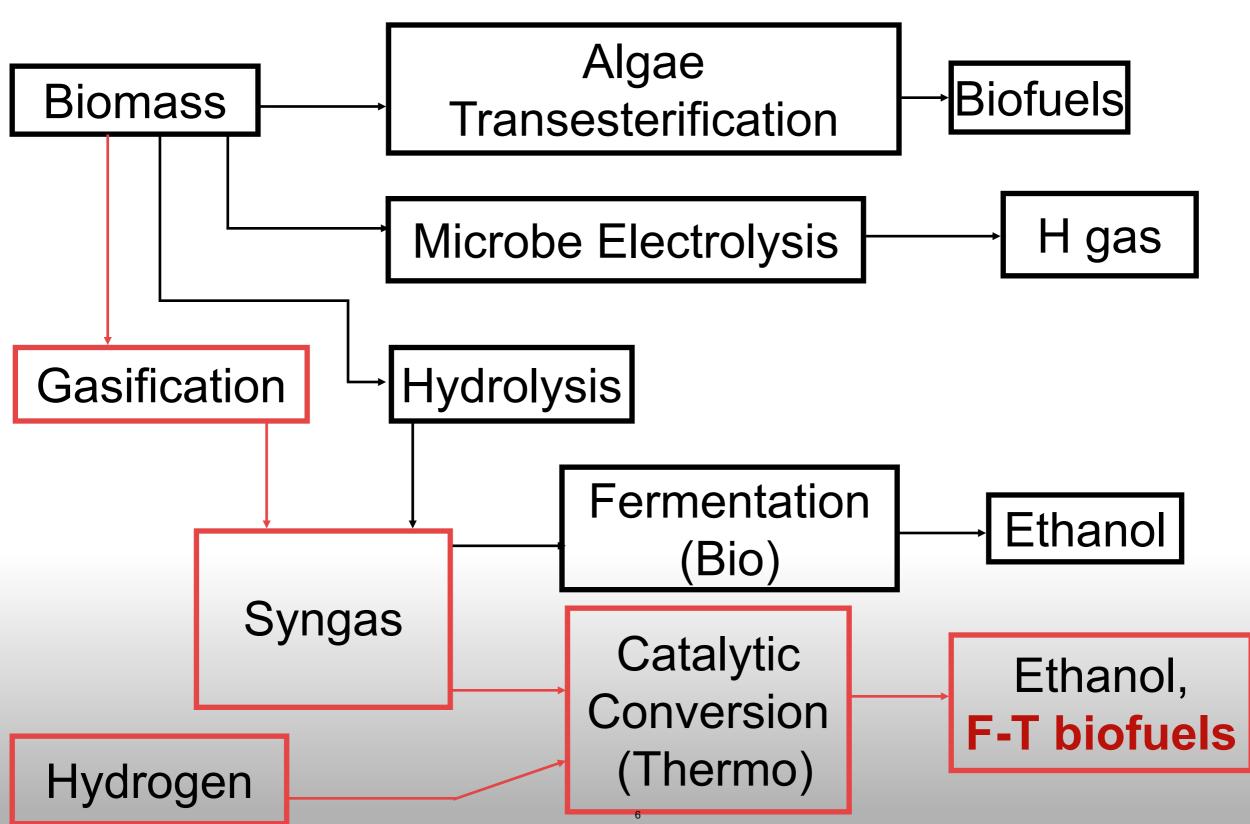
Customer Requirements

- Carbon emissions
- Fuel Demand
- Fuel Output (Quantity)
- Competition with Food Suppliers
- Cost of Fuel Produced
- Quality of Fuel Produced (Energy Density)

Matt C., Kathryn H., Uuganbayar O.	8						1	$\langle + \rangle$								
matro, Natifyn H, Otganlayaro,	-1							-X-	->							
	8					/	$\langle - \rangle$	$\langle - \rangle$	$\langle - \rangle$							
	-2					1	+×-	-X-	-X-	->						
					/	$\langle + \rangle$	$\langle + \rangle$	$\langle - \rangle$	$\langle + \rangle$	$\langle + \rangle$						
					1	+X-	-X-	-X-	•×-	1.1	+>					
	2			/	$\langle + \rangle$	$\langle + \rangle$	$\langle - \rangle$	$\langle + \rangle$	$\langle - \rangle$	$\langle + \rangle$	$\langle + \rangle$	1				
	2			1	1.	+/-	1		\sim	1.1	۲×۲	+				
	6		/	\sim	+	5	$\langle + \rangle$	1	1	$\langle + \rangle$	\sim	$\langle + + \rangle$				
	3		\wedge	+	\sim	1.1	+			11	*	+				
			$\mathbf{\nabla}$	1	+X-	+	+×+		+×+		+X-	+X-	/			
		$\langle + \rangle$	$\langle \downarrow \downarrow \rangle$		$\langle + \rangle$	$\langle + \rangle$	$\langle + \rangle$	4	$\langle \ \rangle$	(++)	$\langle + \rangle$	$\langle + \rangle$	$\langle + \rangle$	\sim		
	1	+×+	N	X	X	1	. \ /	+×4	X.	. \/	N/	₽X-	X	\mathbf{X}	~	
Column #		2	3	4	5	6			\sim	10	11	12	13	14	15	5
Direction of Improvement:			3		2			•		10		12	13	-14	10	
Minimize (¥), Maximize (▲), or Target (x)	-	-			· ·	-	.			s	-					1
Quality Characteristics (a.k.a. "Functional	1													52		
Requirements" or "Hows")														neme		
								tucts					-2	unbe		
							B	Syproc			휟		remor	ure R		
\sim	ę	8		Indu		-22	onpou	988	ege		reme	sions	Roqui	perat		
Demanded Quality	Plant Lifetime	Maintenance	2	Electricity Input	censing	Capital Costs	Useful Byproducts	MasterUseless Byproducts	Waste Storage	Complexity	Land Roquirements	Emissions	Hydrogen Requirements	Steam/Temperature Requirements	6	
(a.k.a. "Customer Requirements" or "Whats")	Plant	Maint	Training	Electr	Licen	Capit	Useh	Wasb	Wasb	Com	Land	002	Hydr	Stear	Storage	1
Carbon Emissions							Θ	Θ	Θ	0		Θ				
lemand of Fuel		0					Θ			0	0		Θ			T
uel Output/Quantity		0		Θ						0	0		0			
Cost of Electricity						Θ										Ĩ
Environmental Impact					Θ			Θ	Θ	0	Θ	Θ				
Competition with Food Suppliers					Θ	0					Θ					T
overnment Subsidizing					Θ	0		Θ	Θ		Θ	Θ				
							0						0			
cost of Fuel Produced				-			10			-		-	-		-	+
ost of Fuel Produced tuality of Fuel/Energy Density (i.e. in relation to fossil iels, etc.)		0								0			Θ			1

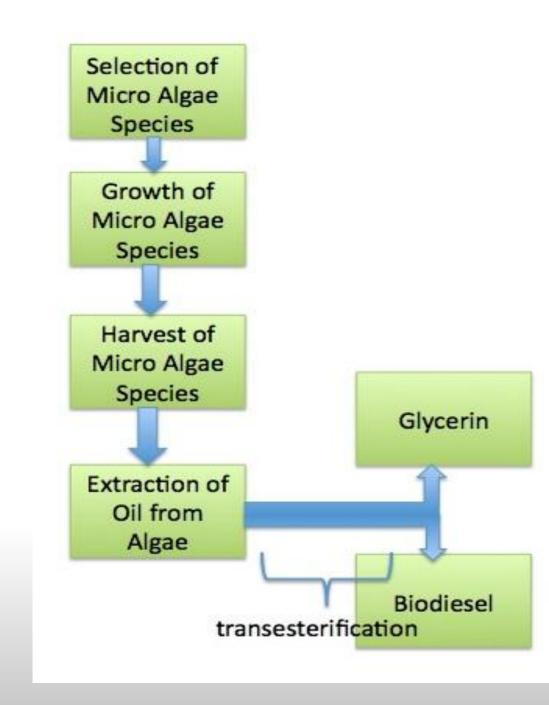
HoQ template courtesy of QFD Online. Used with permission.

4



Biomass feedstock comparison

	Cost	Energy density	Agriculture yield	Competition with food source
Switch grass	\$60/ton	17 MJ/kg	11.5 ton/acre	no
Sorghum	\$40/ton	16.9MJ/kg	20 ton/acre	yes
Energy cane	\$34/ton	12.9MJ/kg	30 ton/acre	no
Energy cane	\$34/ton	12.9MJ/kg	17 ton/acre	yes
Corn	\$40-50/ton	13.4MJ/kg	3.4 ton/acre	yes
Algae			58,700L/ha	no



Biomass feedstock comparison

Algae Transesterification

Pros:

- Requires low temperatures
 between 20 30C
- Produced without the use of

high-value arable land

Cons:

- Does not utilize core heat or hydrogen inputs
- Expensive to harvest

***http://www.oilgae.com/algae/oil/biod/tra/tra.html ***Yusuf Chisti (2007) Biodiesel from Microalgae. *Biotechnology Advances* 25:294-306

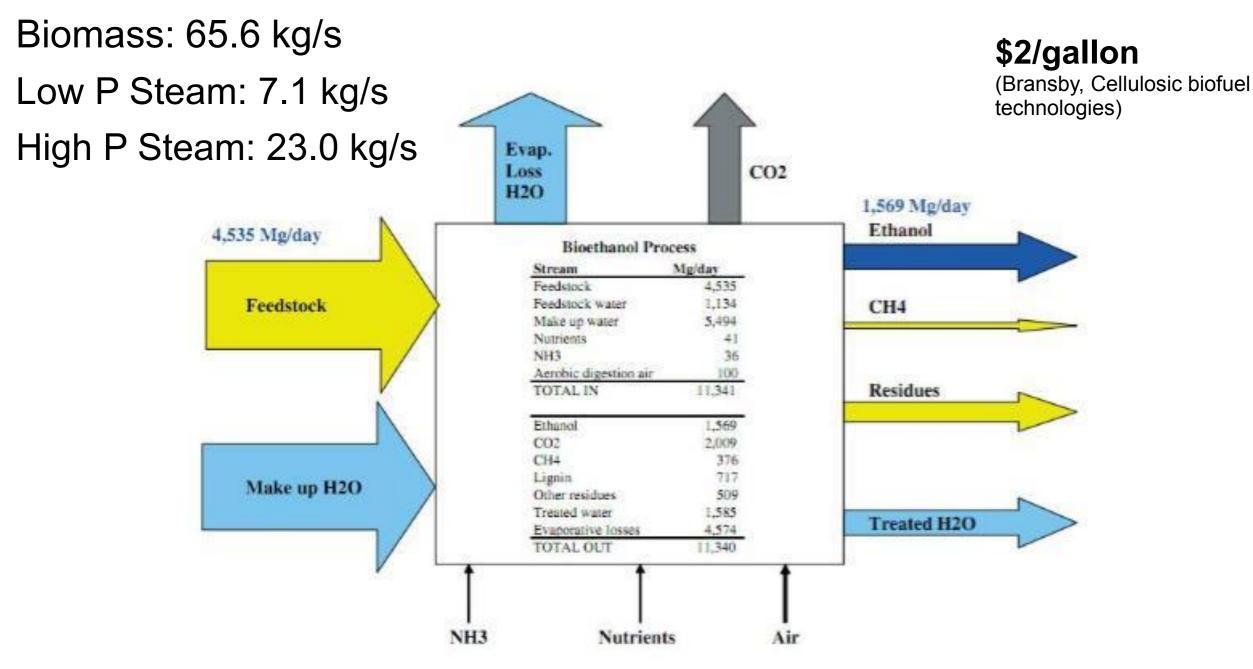
Uses power from the core to drive microbial processes that produce hydrogen gas.

- 1. Microbial Electrolysis Cell (MEC)
- uses energy to enhance the microbial processing of organic substrates (e.g. cellulose, acetic acid) in a "biobattery" to produce hydrogen gas and oxygen.
- 2. Microbial Electrosynthesis

Efficiency depends on pH, system temperature, and choice of microbe

- Dilute acid pre-treatment (glucose etc)
- Simultaneous Saccharification and

Fermentation (SSF) (37° C, 7 days)


- Ethanol recovery by distillation
- Waste Water Treatment (WWT)

(methane)

Ethanol Inputs and Outputs

<u>Inputs</u>

© Society of Chemical Industry and John Wiley & Sons, Ltd. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

- 1. Gasification (Syngas production)
- 2. Syngas conversion (F-T liquid production)
- 3. F-T liquid refining (gasoline, diesel blend)

© Range Fuels, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

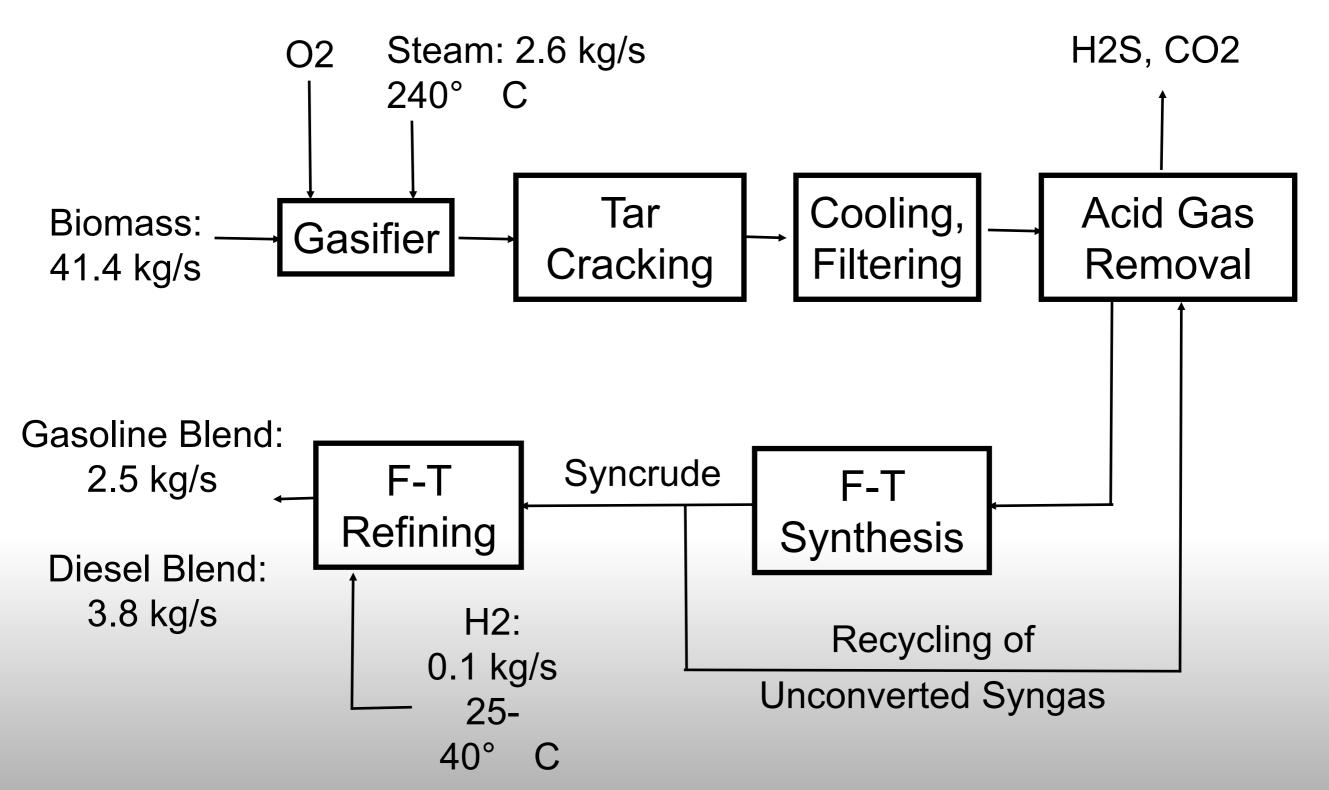
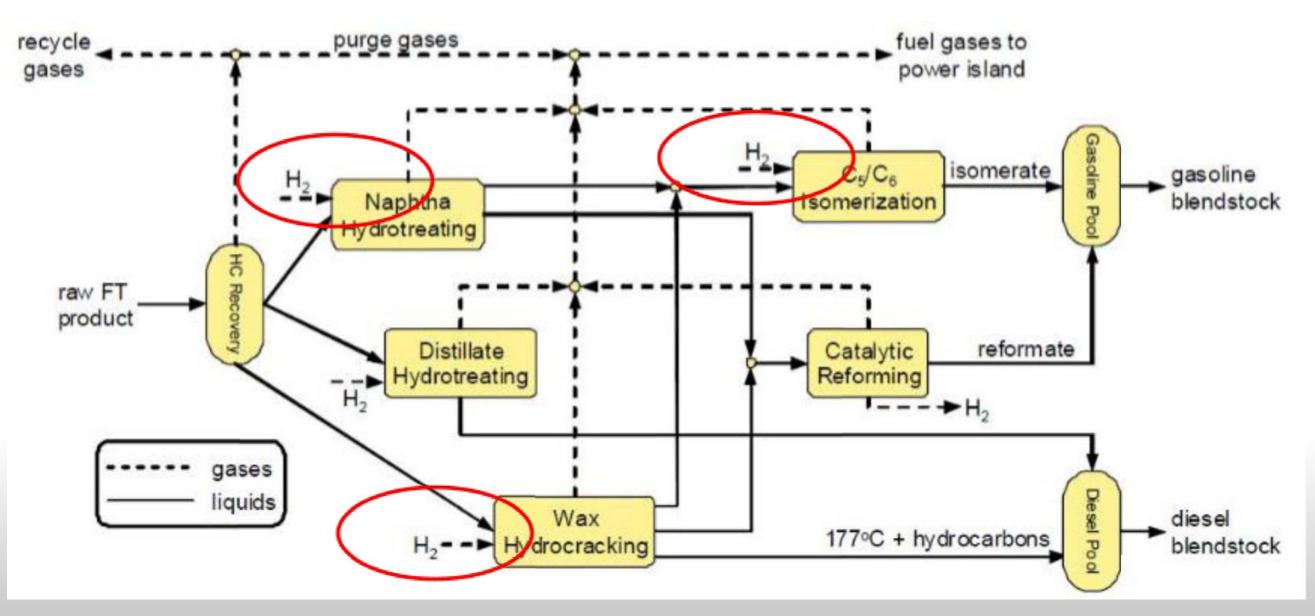
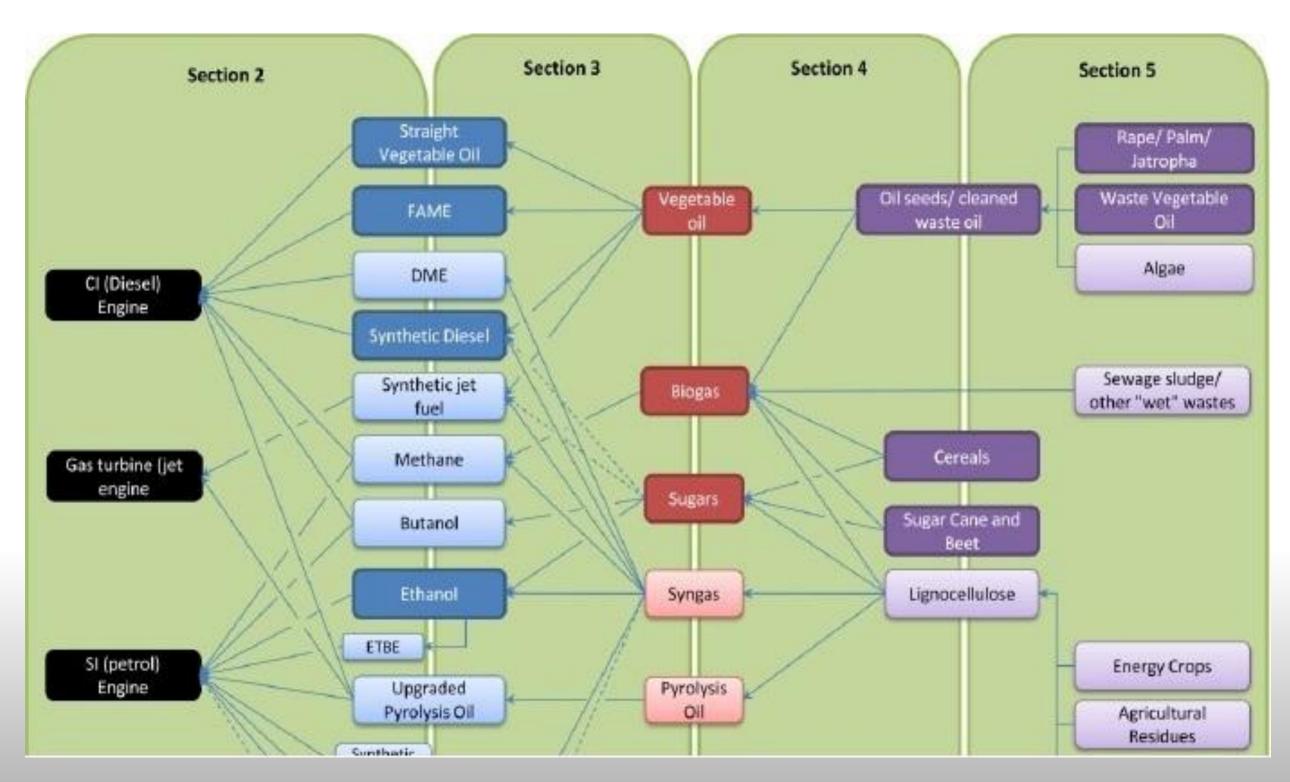



Diagram and numbers adapted from Kreutz, Fisher-Tropsch Fuels from Coal And Biomass, 2008

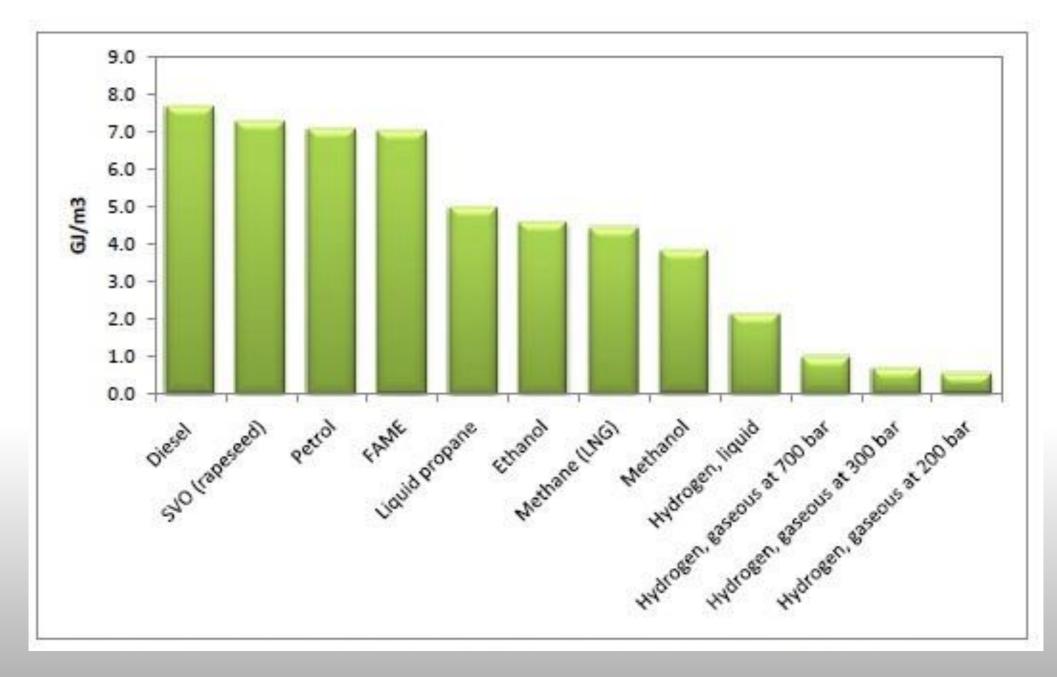
Courtesy of Thomas G. Kreutz. Used with permission.

\$1/gallon (Bransby, Cellulosic biofuel technologies)



Comparison of processes

	Temperature of reaction	Hydrogen input	Steam input	Biomass input	Biofuel Output rate	Electricity usage	Capital cost
Electrofuel	25-100C	0	0	7.2 kg cellulose/1 kg H2	1.23 m3 H2/m3 reactor day at optimal voltage	~2.2 kW h/m^3- reactor day	\$750,000
Bioconversion	190C	0.41 kg/sec	30 kg/sec (100C and 190C)	65kg/sec (s witch grass)	-		\$346million
Thermochemical biofuel	236	0.1kg/sec (25C, 4bar)	2.6kg/sec,(236 C)	41.4 kg/sec (switch grass)	6.3kg/sec (gasoline blend)	32MW	\$541 million
Photosynthetic algae	20-30C	0	0	carbon dioxide, nitrogen, sulfur	226.1 gal/ day	55kW	\$821,000- \$14million



Summary of Products

Energy Density of different possible products from F-T liquids Bio-diesel fuel - highest energy to volume ratio

Biofuel Carbon Emissions

Bio-diesel Emissions vs. Conventional Diesel Emissions for:

- 100% bio-diesel fuel
- 20% bio-diesel fuel and 80% conventional diesel fuel

Emission Type	B100	B20
Regulated		
Total Unburned Hydrocarbons	-67%	-20%
Carbon Monoxide	-48%	-12%
Particulate Matter	-47%	-12%
Nox	+10%	+2% to -2%
Non-Regulated		
Sulfates	-100%	-20%*
PAH (Polycyclic Aromatic Hydrocarbons)**	-80%	-13%
nPAH (nitrated PAH's)**	-90%	-50%***
Ozone potential of speciated HC	-50%	-10%

- Low freezing point at 100% bio-diesel fuel
 - Generally mixed to dispel these qualities
- Does not meet current EN590 vehicle quality standard
 - Can be used in standard cars up to 20% bio-diesel fuel
- Rise in Nitrogen Oxide emissions, responsible for smog
- Decrease in bio-diversity in energy crop harvesting
- DARPA is interested in alternative jet fuels production
 - Have grants for \$5M that can help offset capital cost

- Switchgrass
- Gasification-based F-T process
- Steam requirement: (2.6kg/sec , 240C)
- Hydrogen requirement: 0.1kg/sec (25C, 4bar)
- End products: biodiesel and gasoline

MIT OpenCourseWare http://ocw.mit.edu

22.033 / 22.33 Nuclear Systems Design Project Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.